
Università degli Studi di Milano Bicocca

Scuola di Scienze

Dipartimento di Informatica, Sistemistica e Comunicazione

Corso di laurea in Informatica

Implementation of a pipeline to infer
somatic selective advantage relations in

Renal Carcinoma

Relatore: Giancarlo Mauri

Co-relatore: Marco Antoniotti

Co-relatore: Daniele Ramazzotti

Co-relatore: Giulio Caravagna

Relazione della prova finale di:

Andrea Campagner

Matricola 761976

Anno Accademico 2014-2015



Abstract

The availability of biological data, produced by modern Next Generation Sequenc-
ing technologies, provided researchers ways to tackle complex biological problems,
like the study of cancer diseases.

An important aspect that is to be studied, in order to understand cancer, is
tumorigenesis, the biological process resulting in the formation of a tumor, that
consists in an accumulation of alterations in a set of genes that are important for
cell regulatory activities.

An important problem is then to identify these relevant mutated genes, so
called drivers, and also to infer selective advantage relations between them, in
order to reconstruct progression models able to explain the progression of the
disease.

As of today various algorithms and techniques to solve this progression infer-
ence problem are available and, in particular, the BIMIB group developed a novel
technique called CAPRI.

Cancer diseases, however, usually exhibits problematic characteristics (e.g. tu-
mor heterogeneity, presence of alterations irrelevant for the progression of the
disease, etc.) that hinders the ability of existing algorithms to infer progression
models.

In this document we report on the pipeline, inspired by a previous work con-
ducted by the BIMIB group in the context of a study on Colorectal Cancer, that
we implemented in order to cope with these problems, thus providing a way to
reconstruct progression models from previously available expression data.

This pipeline has been implemented in order to study a specific type of cancer,
known as Clear Cell Renal Cell Carcinoma, and integrates various external tools
in order to solve the problems presented above so that its general structure allows
to: (i) import and process raw or pre-processed expression data, (ii) extract a
set of possible subtypes of patients that are likely to have a similar progression of
the disease, (iii) select genes that are relevant for the progression of the disease,
(iv) identify patterns of mutual exclusivity between relevant genes and (v) infer
selective advantage relations and establish which are recurrently inferred across
various subtypes.

In particular we applied the pipeline to two different studies: a cross-sectional
study conducted by The Cancer Genome Atlas (TCGA) and a single-patient study
conducted by Gerlinger et al. For the TCGA study we applied the whole pipeline,
on the contrary for the single-patient study we implemented only the step corre-
sponding to inference of progression models, because of the reduced dimensionality
of the dataset.
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Chapter 1

Introduction

Next Generation Sequencing (NGS) Technologies are producing huge
amounts of data, augmenting the possibility to study and analyze complex
biological phenomena like cancer diseases.

In this document we present the implentation of a pipeline, adapted from
a conceptual pipeline defined for a previous study conducted by the BIMIB
group in the context of Colorectal Cancer, that we applied to analyze Clear
Cell Renal Cell Carinoma.

This pipeline is partially automated and integrates various pre-existing
external tools in order to process and analyze NGS preprocessed data to infer
relationships between genomic events that are likely to be relevant for the
progression of the disease.

In this context relevant relationships means relationships of selective ad-
vantage, that is, a mutation of a particular gene enables clones harboring
this mutation to survive and reproduce better than other cells starting a
wave of clonal expansion, in which mutated clones proliferate, that will end
when a mutated clone will acquire a new mutation giving further selective
advantage. In this case we say that a selective advantage relationship occur
between the two mutations, and in particular the first selects for the latter.

1.1 Preamble

Cancer is a genetic disease figuring among the leading causes of morbidity and
mortality worldwide, unfortunately cancer is a clonal disorder that is very
specific to each individual and cancer type, as suggested by the fact that clin-
ically identical tumors have often few common genetic features. In addition
to this inter-patient heterogeneity there is also heterogeneity at patient-level,
so called intra-tumor heterogeneity. Heterogeneity clearly has implications
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for predictive or prognostic strategies against cancer.
To understand cancer is necessary to understand tumorigenesis (i.e. the

biological process resulting in the formation of a tumor), which consists in
an accumulation of genetic mutations in three types of genes:

• Oncogenes

Genes that regulate cell division of healthy systems; as such, mutated
oncogenes may lead to cells growing out of control;

• Tumor suppressor genes

Genes that prevent cells to become cancerous; as such, mutated tumor
suppressors genes may have an hindered functioning thus allowing cells
to progress to cancer;

• Stability genes

A particular type of tumor suppressor genes, that are involved in rec-
ognizing and repairing DNA damage; as such, mutated stability genes
may lead to an increased mutation rate of all genes (including onco-
genes and tumor suppressor genes).

Mutations are usually ascribed to two broad categories: drivers (i.e. muta-
tions that inhibit key cell regulatory processes eventually leading these cells
to become cancerous) and passengers (i.e. mutations that have no direct ef-
fect on cancerous development), these mutations can either hit a single gene
or a wide chromosomal region.

An important aspect of understanding tumorigenesis is to identify early
driver mutations (i.e. driver mutations that are likely to start the progression
of cancer) and also selective advantage relations between driver mutations,
in order to construct and devise progression models that are able to explain
cancer progression. Progression models are probabilistic observational mod-
els, over a set of mutated genes, identifying relations among these genes that
capture selective advantage relations and inducing a causal structure able to
explain the order in which cancer can progress to acquire increasingly higher
fitness.

The most recent approaches tend to adopt Bayesian Networks to model
these progressions, this is because they are well-suited to represent both
branching and convergent evolutionary trajectories. However, although these
approaches are able to infer confluent selective advantage relations involving
multiple genes, they are able to do so only in the specific case in which
multiple mutations co-occur to select for a certain event. This is a rather
severe limitation in the context of cancer, because mutations disrupting a
single function are usually distributed among multiple genes of a common
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pathway, and most samples are consequently mutated in only one of those
genes because additional alterations would not convey a further selective
advantage to the tumor. For this reason, these confluences, usually exhibit
mutual exclusion. In general a single gene could be selected by a group
of genes related by an arbitrary relation, we call such relation a pattern.
In order to overcome this limitation, the BIMIB group developed a novel
algorithmic technique, named CAPRI (Cancer Progression Inference) [1], that
we integrated in our pipeline.

1.2 Introduction to the CAPRI algorithm

CAPRI is an algorithm, developed by the BIMIB group, in order to solve
the progression inference problem. The algorithm takes as input a set G
of n mutational events across m samples (represented as an m × n matrix)
and a set φ of logical formulae, representing patterns. The main idea of the
algorithm is to combine a scoring function and subsequent filtering and model
selection techniques (i.e. maximum likelihood estimations and bootstrap
iterations) in order to filter out spurious relations.

The scoring function is based on Patrick Suppes’ conditions for proba-
bilistic causation, that can be stated as follows:

Definition. Let i and j be two observables, represented as two Bernoulli
random variables, and let ti and tj, respectively, the time of occurrence of i
and j; we say that a selectivity relation hold among i and j if:

(i) ti < tj; that is, i occurs before j;

(ii) P (j|i) > P (j|i); that is, observing i raises the probability of observing
j.

We integrated CAPRI in the pipeline for various reasons:

• It has the ability to test arbitrarily complex relations among events, in
a supervised setting in which these relations are explicitely given as an
input;

• It outperform various state-of-the-art algorithms, in particular in the
presence of noise and with limited sample size.

Furthermore various convergence properties were proved for the CAPRI al-
gorithm, in particular it has been proved that the algorithm is sound and
complete.
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1.3 Introduction to Clear Cell Renal Cell

Carcinoma and data summary

As previously stated, we developed the pipeline that is the object of this
document in the context of a case study, in which we analyzed Clear Cell
Renal Cell Carcinoma, a specific type of cancer affecting kydneys. For our
study we used two sources, namely the study conducted by The Cancer
Genome Atlas (TCGA [2]) consortium and the study conducted by Gerlinger
et al. in [3] from which we collected all data used in our analysis and also
biologically relevant information.

The nature of these two sources is vastly different: while the study con-
ducted in [2] is a large population study (over 400 patients) the study con-
ducted in [3] involved only 10 patients, also, the TCGA study is a so-called
cross-sectional study in which biopsies for multiple patients are collected at
a certain time, on the contrary the study conducted by Gerlinger et al. is a
Single-patient study in which for each patient multiple biopsies of different
tumoral regions are considered. In what follows we refer to the study con-
ducted by the TCGA consortium as TCGA study and to the study conducted
in [3] as Single-patient study.

Introduction to Clear Cell Renal Cell Carcinoma Kidney cancers,
also called Renal Cell Carcinomas, are a class of chemoterapy-resistant dis-
eases that can be distinguished by the underlying gene mutations. Clear Cell
Renal Cell Carcinoma (CCRCC), which is the most common among kidney
cancers, is mainly related to mutations of the vhl gene but was also recently
found to be related to alterations in the SWI/SNF chromatin remodeling
complex which include genes like pbrm1, setd2 and bap1. A distinguishing
caracteristic of CCRCC is a high degree of heterogeneity.

The TCGA study evidenced the importance of pathway-level alterations
for the progression of the disease, in particular they highlighted importance
of the VHL/HIF, Chromatin remodeling and PI3K/AKT/MTOR pathways
, furthermore they evidenced the importance of the deletion of the 3p arm
(containing all four genes mentioned above).

The Single-patient study further confirmed the heterogeneity of CCRCC
also evidencing the fact that this type of cancer exhibits a branched, rather
than linear, progression also confirming the importance of vhl mutations,
deletions of the 3p arm and mutation of other 3p-related genes.

6



1.3.1 Data summary

TCGA study data summary The TCGA project for Human Clear Cell
Renal Cell Carcinoma (KIRC, [2]) provides genome-scale analysis of 446
samples with exome sequence, DNA copy number, messenger RNA and mi-
croRNA expression data which we downloaded on 3 March 2015 from TCGA
repository:

https://tcga-data.nci.nih.gov/docs/publications/kirc 2013/

We processed the following files (data freeze 19 April 2012):

• hgsc.bcm.edu KIRC.Mixed DNASeq.Level 2.1.2.0.tar.gz

Somatic mutations profiles obtained via whole-exome sequencing for
491 samples (417 patients) with 12008 annotated mutations Manual
Annotation Format (MAF) file). 74 patients had multiple samples as-
sociated in the MAF file; duplicated samples were resolved to have
one sample per patient according to the following two-stage criteria:
(i) we removed outliers (ie. samples with less than 10 mutations),
(ii) we applied the TCGA guidelines for aliquote disambiguation, see
https://wiki.nci.nih.gov/display/TCGA/TCGA+barcode.
For each annotated gene, Entrez Gene Id and Hugo Symbol were anno-
tated; however for 542 genes the corresponding Entrez Id was unsolved
(ie. set to 0). Since a map between Entrez Ids and corresponding Hugo
Symbols is needed in subsequent stages, we solved the missing entries
according to the following techniques: (i) we used an hand-curated
map, (ii) we queried the web service http://mygene.info. All mu-
tations annotated by the TCGA consortium were considered for our
analysis.

• all thresholded.by genes.kirc 120430.txt.zip

Copy number and structural aberrations - termed Copy Number Alter-
ations (CNAs) - data was available, in GISTIC format, for 428 patients
with 53419 annotated events on 21881 genes. Only high-level gains and
homozygous deletions were considered for our analysis (GISTIC scores
+2, -2 termed “Amplification” and “Deletion”), resulting in a reduction
to 10253 events 9327 genes;

• KIRC Clinical Data Jul-31-2012.xlsx

Clinical data summary (sample barcode and tumor stage) was available
for 446 samples;

• focal data by genes.kirc 120430.txt.zip

Since the TCGA consortium states that, for CCRCC, arm-level CNAs
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are more relevant than focal-level (single gene) CNAs, we useda map of
genes to respective chromosome arms (at the highest possible resolution
level, e.g. 3p25.1) to convert the focal-level CNA dataset, obtained as
stated previously, to an arm-level CNA dataset.

The input cohort of patients with both CNAs and somatic mutation data
consists of 411 patients with 22016 alterations on 16196 distinct genes, di-
vided as follow:

alteration type count source

somatic mutations 11861 MAF file
focal amplifications 5699 GISTIC score +2
focal deletions 4456 GISTIC score -2

altered genes 16196

The input cohort of patients with both arm-level CNAs and somatic mutation
data consists of 411 patients with 12414 alterations on 12322 distinct sites,
divided as follow:

alteration type count source

somatic mutations 11861 MAF file
arm-levell amplifications 334 GISTIC score +2
arm-level deletions 219 GISTIC score -2

altered sites 12322

For subsequent analyses, described in the following sections, we selected
the dataset with arm-level CNAs and somatic mutations, obtained as stated
above.

Single-patient study data summary The single-patients study offered
somatic mutation and CNAs for ten patients, named respectively EV001,
EV002, EV003, EV005, EV006, EV007, RMH002, RMH004, RMH008 and RK26,
for each patient data was available for multiple regions. We processed the
following files:

• ng.2891-S2.xlsx

We manually processed the file, which contained somatic mutation data
for each of the patients, to provide data that could be easily handled
by our pipeline, in particular we created a separate file for each patient.
We retained each type of Somatic mutation, not collapsing them into
a single type as was done for the TCGA study (in which we collapsed
all somatic mutation types in the Mutation type);

8



• Figure 2

We manually created files for CNA data by extracting data from Figure
2 of the main text of [3]. CNA data was available at arm-level at the
highest possible resolution (e.g. 3p25.3).

We only retained data for those genes that were found to be relevant in the
previous analysis conducted by the authors of the study. The study also
provided phylogenetic trees in order to predict the progression of the disease
for each of the patients.

1.4 Description of the implemented pipeline

As previously stated, the main goal of this study was to devise and develop
a pipeline, in the context of a specific case study, that will provide a guide-
line for researchers interested in performing progression inference analysis of
cancer diseases.

The pipeline was implemented using the R programming language, the
reason for this choice was two-fold:

• The R programming language is one of the de-facto standard program-
ming environments in bioinformatics, providing various libraries and
tools for manipulation of biological data;

• The R programming language is well suited for matrix manipulation,
visualization and also naturally includes various statistical techniques.

The pipeline that we implemented is, in general, structured through 5 steps:

• Data importation

In this step, raw datasets provided as input are processed in order to
obtain data in a format suited to be used for the next steps of the
pipeline;

• Subtypes extraction

Given the heterogenity of cancer, in order to reduce confounding effects
due to this heterogeneity, tumor stratification (i.e. clustering patients
according to some biological criteria) is a critical step needed to define
subtypes of patients that are likely to have a similar progression of
the disease. For the execution of this step we interfaced the pipeline
(using functionalities provided in the CAPRI tool) with an external
tool. Details of this step, as applied in our case study, are found in
Chapter 2;
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• Driver events selection

Since passengers mutations are irrelevant for the progression of the
disease it’s important to select only driver events (i.e. events that are
likely to be important for the progression of the cancer) in order to both
reduce the size of datasets and also infer progression models involving
only genes likely to be relevant. In our case study we implemented this
step in a supervised manner. Details are given in Chapter 2;

• Pattern selection

In order to be able to test for arbitrarily complex relationg among
groups of genes, the CAPRI tool, requires users to manually input
patterns representing these relations. For this step the pipeline is in-
terfaced with an external Java tool, named Mutex, but also previously
known information could be employed (in a supervised fashion). This
step is described in Chapter 3;

• Reconstruction of progression models

The final step of the pipeline is devoted to inference of progression mod-
els from processed and filtered datasets obtained in the previous steps.
For this step we use various functionalities offered by the TRONCO
tool. This step is described in Chapter 4.

A graphical visualization of the pipeline, in the context of the case study we
performed based on the TCGA study, is shown in Figure 1.1.
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Figure 1.1: The data-analysis pipeline implemented in this work. Left panel: pipeline used
for the TCGA dataset. We fetched somatic mutation and Copy Number profiles for the
TCGA study KIRC (2012, [2]). The cohort of patients was split according to 3 different
clustering techniques to determine potential CCRCC subtypes progressing with different
patterns of somatic evolution. 12 Subtypes were determined by clustering mRNA expres-
sion, microRNA expression - provided by the TCGA consortium - or somatic mutations
(3) - performed with the NBS tool [5]. Patterns to extract branched/confluent evolu-
tion trajectories over those genes were fetched from the TCGA paper and predicted with
computational techniques. Genes/arms inputed to CAPRI are those either altered with
frequency > 5% or part of a pattern. Confidence estimation is performed to assess the
level of confidence of relations inferred in the reconstructed models. Right panel: pipeline
used for the Single-patient study, in this case we directly applied the CAPRI algorithm to
reconstruct progression models.
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Chapter 2

Subtypes extraction and driver
selection

To reduce confounding effects due to intra-tumor heterogeneity and augment
our ability to infer CCRCC progression models we analyzed the cohort after
applying different clustering techniques on the input samples, in order to
identify groups of patients which are likely to progress in a similar way. In
what follows and in the figures we will refer to mRNA expression, microRNA
expression and mutation subtypes to indicate which TCGA data was used
to compute clusters.

The result of these analyses is the extraction of the following subtypes:

mRNA expression† n microRNA expression† n Mutations‡ n

1 m2 131 mi1 74 n1 64
2 m2 84 mi2 109 n2 194
3 m3 87 mi3 132 n3 52
4 m4 83 mi4 69 n4 101

total 385 384 411
†Provided as TCGA data
‡Computed with the NBS clustering tool

In order to reduce the dimension of the dataset, in particular the number
of genes that we consider for further analyses, we performed a selection of
events, selecting only events that are considered to be relevant for CCRCC
progression in the literature, in particular the sources for these gene and arms
are [2] and [3].
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2.1 mRNA and microRNA expression sub-

types

The TCGA consortium evaluated CCRCC subtypes for mRNA and mi-
croRNA expression, these clustering assignments were computed with con-
sensus clustering via non-negative matrix factorization using the NMF [4]
R package, using standard parameters: 200 primary iterations for clustering
and 50 iterations for factorization rank estimation.

Non-negative matrix factorization is a clustering technique (which is also
used in the tool that we employed for somatic mutation clustering) where a
non-negative matrix is factorized into two smaller matrices, in an attempt to
reduce dimensionality of the initial dataset, formally:

Definition. Let V be a non-negative n×m matrix and r > 0 an integer. Non-
Negative Matrix Factorization (NMF) consists in finding an approximation:

V ' WH

where W, H are, respectively, n× r and r ×m non-negative matrices.

Both mRNA and microRNA analysis identified four subgroups (termed,
respectively, m1 through m4 and mi1 through mi4). The number of samples
with available mRNA expression based clustering assignments was 417, of
these only 390 had somatic mutation data available. The number of samples
with available microRNA expression clustering assignments was 414, of these
only 390 had somatic mutation data available. We then restricted the two sets
of patients, selecting only patients for which also CNA data was available,
thus selecting 385 samples for mRNA expression and 384 for microRNA
expression. Clustering assignments for mRNA and microRNA expression
subtypes are provided as Supplementary Data in the TCGA study, see file
Data file S9 mRNA miRNA cluster assignments.csv.

2.2 Subtypes extracted from somatic muta-

tions

2.2.1 Overview of the Network-Based Stratification
tool

We used the Network-Based Stratification tool (NBS, [5]) to separate the in-
put cohort in subtypes likely to progress through some common accumulation
patterns of somatic alterations.
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Figure 2.1: O
¯

verview of the NBS tool: NBS is a tool for clustering samples on the basis of
somatic mutations. (a) Flowchart of the execution of NBS. The execution of NBS consists
in 3 steps: in the first step mutation profiles are mapped onto a curated network which is
then smoothed to propagate influence of mutated genes to respective neighbours, in second
step mutation profiles are clustered using network NMF, in the third step the cohort is re-
clustered using standard consensus clustering repeating multiple times the first two steps.
(b) Example illustration of the network smoothing step of the algorithm. After smoothing
mutation profiles of patients are propagated across the network. (c) Clustering of patients
using non-negative matrix factorization. The decomposition attempts to minimize the
function shown. (d) Final tumor subtypes are obtained from the consensus assignments of
each patient after multiple applications of procedures b and c. - Picture and description
taken from [5]

NBS is a tumor stratification technique designed to stratify tumor pa-
tients (i.e. cluster the patients into subgroups) on the basis of somatic muta-
tion profiles, since somatic mutations are presumed to be causal drivers for
cancer progression, using prior knowledge of the molecular network architec-
ture of human cells. This prior knowledge is fundamental, because somatic
mutation data is usually very sparse and is thus unlikely that two patients
share the same mutation profiles.

The intuition behind NBS is that, although patients may not share the
same mutations, they may share the same functional subnetworks affected
by these mutations, thus NBS combines somatic mutation data, modeled as
a matrix of 0/1 mutation profiles, with a curated gene-interaction network.
Patients are separately mapped to this network that is then smoothed via
network propagation, simulating a random walk on the network. This dif-
fusion strategy is applied to propagate the influence of each mutated gene
to the subnetwork of its neighbors, thus reducing the sparsity of the muta-
tion profiles. These mutation profiles are then clustered using a variant of
non-negative matrix factorization, called NetNMF. NetNMF is a variant of
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standard non-negative matrix factorization that constraints standard NMF
to respect the network structure underlying the matrix. Finally standard
consensus clustering is applied, in which the above procedure is repeated
multiple times, to promote robust cluster assignments. An overiew of the
NBS tool is shown in Figure 2.1.

2.2.2 Clustering setting

NBS requires as input a set of 0/1 mutation profiles, obtained as described in
the previous section, and the number k > 0 of clusters to extract; the input
format for mutation signatures is the same we use for progression inference.

To augment the prediction capabilities of the tool - which uses solely
information about somatic mutations - we used all the entries annotated in
the MAF file for all the patients with exome-sequencing data available (417
patients, >12008 mutations). Results obtained with NBS were mapped to
the samples with both somatic mutations and CNA data available. The tool
was used with the following parameters (suggested by the authors as default):
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Parameter Value Description

prop-network "ST90Q adj mat" NBS propagation network†

infl-network "glap subnetwork ST90" graph influence measure derived from network
outDeg 11 number of nearest neighbours for Laplacian in-

fluence
min mutation 10 minimum number of mutations in a sample to

cluster
nmf type "netnmf" non-negative matrix factorisation technique for

consensus clustering
nsample 100 number of times to perform non-negative ma-

trix factorisation technique as part of consensus
clustering

smp feat 0.8 proportion of samples to include in consensus
clustering

smp ind 0.8 proportion of genes to include in consensus clus-
tering

min mutations 9 minimum number of mutations per sample to in-
clude

proV 0.7 network-dependent propagation value (for
STRING)

k 2, 3, 4 ,5 number of clusters to extract (variable)
†Network prepared in [5] by including the top 10% of interactions according to the weights in
STRING v.9 [6]. It contains 12233 genes and 164034 edges; it integrates evidence types including,
experimental expression and literature mining approaches to derive a globally weighted network of
gene interactions, it comprises of multiple types of gene interactions (e.g., protein-protein interac-
tions, genetic and cocitation).

A visualization of the somatic mutation data for the subtypes extracted
with the NBS tool, with events selected as described in Section 2.3 is shown
in Figure 2.3

We also performed cluster sensitivity analysis for clustering assignments
inferred via NBS, selecting the cluster assignment with k=4 as a reference,
in order to assess how cluster assignments varied changing the number of
clusters (i.e. parameter k). Results of this analysis are shown in Figure 2.2.
For NBS-inferred clustering we selected as reference assignment the one with
4 cluster, in accordance with the number of clusters inferred in the TCGA
study.
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Figure 2.2: For the subtype extracted with the NBS tool we performed sensitivity analysis,
selecing the cluster assignments with k=4 clusters as a reference, in order to assess how
cluster assignments varied changing the number of clusters.

2.3 Driver events selection

As previously stated, we reduced the set of CCRCC driver events to a smaller
set of genes and arms - which harbour, respectively, somatic mutations and
CNAs - prior to performing further analysis. We performed this selection be-
cause not all mutations and CNAs are relevant for the progression of cancer,
and is thus important to select only relevant genes in order to augment the
ability to infer progression models.

Various techniques can be used to select driver genes/events for cancer
progression: recurrent mutations/CNAs or, more sophisticatedly, mutations
in genes predicted to have a functional role. For this last category of predicted
drivers a plethora of tools is available in the literature [7, 8].

For consistency with the TCGA study, in what follows we selected 50
genes that were predicted to be relevant by the TCGA consortium via MutSig
[7] analysis, also for all these genes we selected the corresponding arms. In
addition to this set of events we also selected a set of arms that were explicitly
denoted as relevant in both the TCGA study and [3], also we selected all genes
appearing in exclusivity groups identified in the TCGA study.

Not all of these genes were explicitly mapped to a pathway, so we man-
ually annotated this information using both explicit pathway annotations
and information about frequently mutated subnetworks (as obtained in the
TCGA study via HotNet analysis). Follows a list of all selected genes and
arms:
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Chromatin Remodeling

1 pbrm1 4 bap1
2 setd2 5 arid1a
3 kdm5c

DNA Damage

1 tp53
2 atm
3 cdkn2a

VHL

1 vhl
2 tceb1

PI3K/AKT/MTOR

1 akt1 4 egfr 7 pten 10 gnb2l1
2 akt2 5 mtor 8 tsc1 11 sqstm2
3 akt3 6 pik3ca 9 tsc2 12 rheb

Others

1 mapk9 10 slc27a6 19 gpm6a 28 dio2 37 tspan19
2 msr1 11 col6a6 20 ms4a12 29 sfxn4 38 dst
3 txnip 12 spred1 21 ro2l8 30 emr3
4 nfe2l2 13 fbn2 22 zfpm2 31 hoxc8
5 btnl3 14 stag2 23 nkain3 32 atf7ip2
6 slitrk6 15 secisbp2l 24 pglyrp3 33 scarb2
7 npnt 16 tfdp2 25 or10ag1 34 pcna
8 ccnb2 17 hmcn1 26 kiaa0174 35 slc17a6
9 znf800 18 magec1 27 fam5b 36 ms4a3

Arms

1 14q32.33 14 7q36.1 27 7q31.33 40 1q21.3 53 12q21.31
2 19q13.2 15 3p25.3 28 5q23.3 41 11q11 54 6p12.1
3 1q44 16 3p21.1 29 3q22.1 42 16q22.3 55 1q25.1
4 7p11.2 17 3p21.31 30 15q14 43 1q25.2 56 2q14.3
5 1p36.22 18 Xp11.22 31 Xq25 44 14q31.1 57 7q22.3
6 3q26.32 19 8p22 32 15q21.1 45 10q26.11 58 8q24.21
7 10q23.31 20 1q21.1 33 3q23 46 19p13.12 59 12p11.21
8 9q34.13 21 8q21.11 34 1q25.3 47 12q13.13 60 20q13.33
9 16p13.3 22 2q31.2 35 Xq27.2 48 16p13.13 61 4q34.3

10 5q35.3 23 13q31.1 36 4q34.2 49 4q21.1 62 6q22.33
11 17p13.1 24 1p36.11 37 11q12.2 50 20p12.3 63 8p23.2
12 11q22.3 25 4q24 38 8q23.1 51 11p14.3 64 3p26.1
13 9p21.3 26 15q22.2 39 8q12.3 52 11q12.1 65 5q35.2
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Mutation subtypes for manually annotated pathways

40% VHL
34% PBRM1
13% SETD2
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2% EGFR
2% MSR1
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2% STAG2
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1% BTNL3
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1% NPNT
1% SLC27A6
1% SPRED1
1% ATF7IP2
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1% EMR3
1% KIAA0174
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Figure 2.3: We used the NBS tool to perform somatic mutation-based clustering and we
identified 4 subtypes. We then performed a selection of event, in order to retain only
those genes and arms that are relevant for the progression of CCRCC. In the Figure we
represented somatic mutation events, selected as described in Section 2.3, for subtypes
extracted with NBS. Somatic mutation data, obtained as described in Chapter 1, was
given as input to the NBS tool which extracted 4 subgroups, we then added also CNA
events to these subgroups. Mutational profiles of subtypes are represented as a heatmap
in which a colored cell denotes a mutated gene for a certain patient (with different colors
identifying different types of alterations, as shown in the legend). Each gene is assigned
to a pathway/functional group, as defined in section 2.3.
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Chapter 3

Patterns selection for CAPRI’s
hypotheses generation

To exploit CAPRI’s ability to infer complex selective advantage relations -
via hypotheses testing in its supervised mode - we looked for patterns of
soft/hard mutually exclusive alterations functional to cancer progression1.

Patterns were either assessed in a computational fashion or by fetching the
literature. It is to note that, by inputting a pattern to CAPRI, a selective
advantage relation for the pattern to be inferred is not forced, rather the
pattern is tested and competes with all other relations for the inference of a
model maximizing data likelihood.

3.1 Preamble

A pattern is a formula over the somatic mutations and CNAs which we
include to infer a progression model. For instance, mtor:mutation ∨
rheb:mutation is a soft exclusivity pattern selecting samples with mutations
in mtor and germline rheb, together with samples with mutation in rheb
and germline mtor, together with samples with mutations in both mtor
and rheb. In order to exclude the latter the pattern should be written as
an hard exclusivity pattern, using ⊕ connective.

In general, a pattern suggests an “observational trend” which captures a
certain relation between a group of events, e.g., a strong form of exclusivity

1We adopt the terminology introduced in [9]. Hard mutual exclusivity refers to strictly
mutually exclusive (in testing the null hypothesis being that overlaps between them can be
explained by random errors); this will be in what follows denoted via the logical exclusivity
operator ⊕. Soft mutual exclusivity weakens the overlap constraint for independent events
overlapping less than expected by chance because of a statistical interaction. This will be
denoted with the logical disjunction operator ∨.
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Figure 3.1: (a) Example of hard-exclusivity pattern, as can be seen there is no overlap for
the alteration of Xq25, the corresponding formula is Xq25:amplification ⊕ Xq25:deletion.
(b) Example of soft-exclusivity pattern, as can be seen there is a patient harboring a
mutation of both pbrm1 and mtor, the corresponding formula is pbrm1:mutation ∨
mtor:mutation.

possibly subsuming functional equivalence and equivalent selective advan-
tage. For instance, one might infer an evolutionary trajectory with vhl
mutations selecting for the above pattern and rheb, in turn, selecting for
tp53 mutations. This would suggest the following clonal-expansion interpre-
tation: vhl-mutated clones will enjoy a clonal expansion and selection and
progress by acquiring mutations in mtor or rheb, or both. In turn, clones
with rheb mutated will be selected by acquiring a tp53 mutations.

A pattern - usually in exclusivity or co-occurrence form - can be either
fetched by scanning the literature or predicted by computational techniques.
In the latter case purely categorical tests such as Fisher can be used, possibly
in combination with biological priors [9, 10]. In this study we use exclusiv-
ity patterns predicted by constraining statistical approaches with biological
information2. The computational techniques that we used predict gene-level
patterns, e.g., exclusivity between mtor and rheb alterations. For this rea-
son we added sub-patterns of: (i) soft exclusivity between genes and their

2This is an attempt to diminish the rate of false positives/negatives for statistical tests
such as Fisher which might be biased by sparse input alteration profiles. Our strategy is
more conservative, it might capture less novel relations, but should diminish the amount
of false selective advantage relations that we infer.
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respective arm, (ii) hard exclusivity between different alterations (across dif-
ferent samples) for each given arm.

Examples of pattern of soft and hard mutual exclusivity patterns are
shown in Figure 3.1.

3.2 MUTEX groups (computational priors)

We used the MUTEX tool [9] to identify mutual exclusivity groups of gene-
level alterations.

3.2.1 Overview of MUTEX

MUTEX is a method for the identification of sets of mutually exclusive gene
alterations in a set of genomic profiles. The strategy implemented by the
tool combines detailed prior pathway information, via a signaling network,
with a statistical metric in order to assign a score to groups of mutated
genes exhibiting a mutual exclusivity pattern and also validate the results.
MUTEX uses both somatic mutation and CNA data. The signaling network
is used to search for groups of mutually exclusive genes which share a common
downstream effect, this search is initialized by setting an altered gene as the
seed of the group and then greedily expanding the group with the next best
candidate gene (ie. the gene that best improves the group score). MUTEX
introduces also a novel statistical metric to measure mutual exclusion of a
group of genes, by testing each gene against the union of all other alterations
in the group (correcting for multiple hypothesis testing). Thus by using a
biological prior (the signalling network) the tool restricts statistical testing
to identify biologically relevant groups of alterations. Currently , MUTEX
is the state-of-the art solution for the identification of exclusivity patterns
from somatic mutations and CNAs.

3.2.2 Patterns selection setting

MUTEX was run on every subtype, with the alterations of the pathway genes
given as input (running time: approximately 3 hours for each set of clusters)
and the following parameters (suggested by the authors as default):
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Parameter Value Description

signalling-network - MUTEX network†

max-group-size 5 maximum size of a result group
first-level-random-iteration 10000 number of randomisation to estimate null distri-

bution of member p-values in mutex groups
second-level-random-iteration 100 number of runs to estimate the null distribution

of final scores
fdr-cutoff - false-discovery-rate cutoff maximising the ex-

pected value of true positives - false positives is
estimated from data

search-on-signaling-network TRUE reduce the search space using the signalling net-
work

† Manually curated from Pathway Commons, SPIKE and SignaLink databases. Provided with the
tool.

The tool returns, for each group, a score derived from p-values corrected
for false discovery rate; we selected only groups with score < 0.2. In the
majority of subtypes no group was selected, in particular we selected one
group for subtype n2, one group for subtype mi2 and two groups for subtype
m3. Follows the list of selected group scores:

Subtype Group Score q-val

m3 tp53, vhl, cdkn2a 0.0471 0.015
m3 cdkn2a, pbrm1 0.15109 0.01275
mi2 cdkn2a, pbrm1 0.1441 0.12
n2 pbrm1, mapk9, tp53, mtor, tceb1 0.1535 0.34

The added groups, as selected by MUTEX (thus, with focal-level somatic
mutation and CNAs) are shown in Figure 3.3.

3.3 MEMO groups (computational priors)

The TCGA consortium ran the MEMO tool (Mutual Exclusivity Modules in
cancer), on the whole dataset, to extract groups of mutually exclusive alter-
ations from the whole cohort. MEMO [10] searches for functional modules
(ie. groups) whose member genes are: (i) recurrently altered across a set of
samples, (ii) known to or likely to participate in the same biological process
(pathway-level mapping) and show a trend towards mutual exclusivity. The
tool integrates multiple data types, maps genomic alterations to pathways
and uses a statistical model that preserves the number of alterations per gene
and per sample. In particular they identified eight groups, mainly related to
genes in the PI3K/AKT/MTOR and DNA Damage pathways, that were not
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specified to be soft or hard exclusive; we created soft exclusivity patterns for
each of these groups:

MEMO groups

1 akt1, akt2, akt3, egfr, mtor, pik3ca, pten
2 akt1, akt2, akt3, mtor, pik3ca, pten, tsc1, tsc2
3 akt1, akt2, akt3, egfr, gnb2l1, pik3ca
4 akt1, akt2, akt3, mapk9, mtor
5 akt1, akt2, akt3, egfr, tp53, pten
6 atm, cdkn2a, tp53
7 akt1, akt2, akt3, pik3ca, sqstm2
8 akt1, akt2, akt3, mtor, rheb, tsc1, tsc2

Genes involved in MEMO groups, for mutation subtype n2, are shown in
Figure 3.4.

3.4 Arm-level groups and genes with both

mutations and arm-level CNAs

We observed that, in the datasets, some arms harboured different events
(on different samples). For this reason we added hard-exclusivity patterns
accounting for all such events, this is because these events obviously showed
mutual exclusivity. An example for this kind of pattern, included in mutation
subtype n2, is shown in panel (a) of Figure 3.2. For this subtype we added
pattern:

8q21.11:deletion ⊕ 8q21.11:amplification

Also, in order to account for mutual exclusivity between somatic muta-
tions of genes and CNAs on the respective arms, we added soft-exclusivity
patterns between genes and respective arms. An example for this kind of
pattern is shown in panel (b) of Figure 3.2. For this subtype we added
pattern:

pten:mutation ∨ 10q23.31:deletion

In every subtype, patterns are instantied by including only genes and arms
with at least an alteration in the set of considered samples. An example of a
complete pattern, with both somatic mutations and CNAs, is shown in panel
(c) of Figure 3.2. For this subtype we included pattern:

mtor:mutation ∨ pten:mutation ∨ pik3ca:mutation ∨ egfr:mutation ∨
akt2:mutation ∨ akt:mutation ∨ 3q26.32:amplification ∨

10q23.31:deletion ∨ 19q13.2em:amplification ∨ 1q44:amplification
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Figure 3.2: (a) Example of hard-exclusivity pattern between multiple events of a single
arms, included for mutation subtype n2. (b) Example of soft-exclusivity pattern between
events of a gene and events of the respective arm, included for mutation subtype n2. (c)
Example of a complete pattern, including both focal-level somatic mutations and arm-level
CNAs, included for mutation subtype n2.
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Figure 3.3: Oncoprint of mutual exclusivity group, as inferred with the MUTEX [9] tool
(thus with focal-level somatic mutations and CNAs). For each of these groups we then
remapped focal-level CNAs to arm-level CNAs and created patterns to be included for
furthere analyses.
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MEMO mutual exclusivity group 1 for subtype n2
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Figure 3.4: Oncoprint of mutual exclusivity groups, computed with MEMO in the TCGA
consortium study, for the mutation-based subtype n2. As can be seen, all genes in-
volved in mutual exclusivity groups are related to the PI3K/AKT/MTOR pathway or
the DNADamage functional group (as defined in section 2.3). Genes involved in these
groups are mutated with relatively low frequency but exhibit, evidently, hard exclusiv-
ity. As an example, for group 7 we added pattern pik3ca:mutation ∨ akt1:mutation ∨
akt2:mutation
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Chapter 4

Reconstructed models

4.1 Events selection and statistically indis-

tinguishable events

For each subtype we ran the Cancer Progression Inference (CAPRI, [1])
algorithm with pathway events selected according to the following criterion:

(i) we selected Mutation events for genes with alteration frequency (i.e.,
sum of all events frequency) greater than 5%, for all such genes we also
selected all events for respective arms;

(ii) we selected Mutation events for any gene part of a MEMO/MUTEX
or biological pattern, regardless its frequency, for all such genes we also
selected all events for respective arms;

(iii) we selected all events for arms in the list of relevant arms having alter-
ation frequency greater than 5%.

First condition imposes a minimal cutoff to the genes with alterations likely to
be relevant, the second one mimics the fact that the frequency of a functional
pattern is more important than the individual frequency of its constituting
events, the third one imposes a minimal cutoff to the arms with alterations
likely to be relevant.

An example of the result of this selection, for somatic mutation-based
subtype n2 is shown in Figure 4.1. Even though the current CAPRI version
does not require previous deletion, or merging, of indistinguishable events (in
terms of their respective occurrences, ie. they occur exactly in the same sam-
ples), thus consolidating the respective subtype, for 3 subtypes we decided
to merge into a single event groups of indistinguishable events.

28



Example of subtype extracted with NBS (n2)

21% BAP1
19% VHL
12% PBRM1
11% SETD2
7% DST
7% MTOR
7% 5q35.3
7% 5q35.2
7% KDM5C
6% 9p21.3
5% MAGEC1
4% PTEN
4% 3p21.31
4% 3p25.3
4% ATM
4% FBN2
3% 3p21.1
3% PIK3CA
3% 5q23.3
3% 3q26.32
3% TP53
2% Xq27.2
2% 10q23.31
2% EGFR
2% TCEB1
2% TSC2
1% 8q21.11
1% AKT2
1% BTNL3
1% RHEB
1% 19q13.2
1% 17p13.1
1% 8q21.11
1% 7q36.1
1% 1q44
1% AKT1
1% CDKN2A
1% TSC1

hits
stage

group

stage
Stage I
Stage II
Stage III
Stage IV
none

hits
6

0

group
Chromatin
VHL
Others
PI3K
Arms
DNADamage

none

Amplification

Deletion

Mutation

194 samples

38 events

37 genes

0 patterns

Figure 4.1: Oncoprint of Subtype 2 obtained with mutation-based clustering using the
NBS [5] tool after performing Events selection. The selection was performed according to
the following criterion: (i) we selected Mutation events for genes with alteration frequency
greater than 5%, for all such genes we also selected all events for respective arms, (ii) we
selected Mutation events for any gene part of a MEMO/MUTEX or biological pattern,
regardless its frequency, for all such genes we also selected all events for respective arms,
(iii) we selected all events for arms in the list of relevant arms having alteration frequency
greater than 5%.

We performed this preprocessing in order to reduce complexity of the in-
ferred models, in particular because in the case of statistically indistinguish-
able events, these events are selected randomly in the likelihood fit step of
the reconstruction algorithm (i.e. since there is no theoretical way to choose
one event over another, which events is chosen depends on how the likelihood
fit algorithm explores the search space). In these cases we deleted all events
for the involved genes or arms from the dataset and created a merged event
with type merged. This process of merging events is supervised:

• mRNA expression subtypes: In subtype m3 we merged events
3p21.1:deletion, 3p25.3:deletion and 3p21.31:deletion, and created
event 3p21.1-/3p25.3-/3p21.31-:merged (the minuses in the name
of the merged event are inserted in order to account for the original
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events types, in this case deletion). The indistinguishability of the
deleted events could be explained as a loss affecting a large portion of
the 3p arm. For this subtype we manually added hypothesis between
the created merged event and genes mapped on the deleted arms;

• microRNA expression subtypes: In subtype mi1 we merged events
3p26.1:deletion, 3p25.3:deletion and 3p21.31:deletion, and created
event 3p26.1-/3p25.3-/3p21.31-:merged;

• Mutation subtypes: In subtype n3 we merged events 9p21.3:deletion,
1p36.22: deletion,10q23.31:deletion and 11q22.3:deletion, and cre-
ated event 9p21.3-/1p36.22-/10q23.31-/11q22.3-:merged.

4.2 Reconstruction setting

CAPRI algorithm was executed with the following parameters:

Parameter Value Description

nboot 100 bootstrap iterations for Wilcoxon testing of se-
lective advantage scores (temporal priority and
probability raising)

regularization aic, bic† regularization techniques for likelihood fit
†aic: Akaike Information Criterion, bic: Bayesian Information Criterion

The first parameter determines the number of times the input dataset is
bootstrapped to estimate, via Wilcoxon testing, p-values for the following
inequalities

condition† formula‡ interpretation

temporal priority pi > pj event i is earlier than j
probability raising pj | i > pj | i event i selects for j
† j can be either an event (gene mutation or CNA) or a pattern, i just an event.
‡ pi (resp. pj) is the probability of event i (resp. j), pj | i = pj,i/pi is the conditional
probability of j given i, pj,i is the joint and pi = 1 − pi. All the probabilities are
estimated from input data.

Bootstrap iterations are repeated until nboot observations for each
marginal and joint probability value are available. When these inequalities
hold, CAPRI considers this as a potential selective advantage relation among
i and j, termed prima facie. To select only those relations maximising the
likelihood of data, given the model, CAPRI runs a likelihood-fit algorithm
with these relations as prior constraints.
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The second parameter specifies which regularization technique is used to
achieve a model with a minimal set of prima facie relations. We used two
distinct score-based approaches to penalise complex models, i.e. models with
many relations, and favour smaller ones. The two penalty scores, where x
is input data (i.e., the alteration signatures) and R is the number of prima
facie relations in the model have general form `(x)

`(x) = −2 log(L(x)) + θR . (4.1)

Akaike Information Criterion (AIC, aic) is when θ = 2, Bayesian Informa-
tion Criterion (BIC, bic) when θ = log(n) (n sample size) thus imposing a
stronger penalty term; both scores are approximately correct according to
a different goal and a different set of asymptotic assumptions. These scores
have generally two different aims: AIC being more prone to overfitting er-
rors, but likely to provide also good future predictions from data, BIC being
more prone to underfitting errors but providing a parsimonious model. Thus,
AIC is better in situations when a false negative finding would be considered
more misleading than a false positive, and BIC is better in situations where
a false positive is as misleading as, or more misleading than, a false negative.
For this reason, we used - as is commonly done - both approaches in model
selection, distinguishing which relations are selected by BIC and which by
AIC.

4.3 Graphical interpretation of models

Inferred models are pictured as acyclic graphs, with node size proportional
to event frequency. Edges in grey represent relations inferred with AIC reg-
ularization, black one those inferred with BIC regularization - which are a
strict subset of those inferred with AIC. Two simple models (reconstructed,
respectively, from mRNA expression subtypes m1 and m2) are shown in 4.3
and 4.4.

Nodes are circled with a color univocally determining their pathway. We
graphically distinguish when we infer that an event selects for a pattern,
and viceversa; and we color with red hard exclusivity patterns (not shown
here), and orange soft ones. In the former case we picture the pattern
symbol with a squared box connecting the pattern elements, in the latter
we use a circular notation. Somatic mutation events are represented by
green-colored nodes, amplification events are represented by orange-colored
nodes and deletion events are represented by blue-colored nodes. An exam-
ple of a soft-exclusivity relation is the selection of pattern tp53::mutation ∨
atm::mutation by bap1::mutation, which should be interpreted as: “bap1
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Figure 4.2: Example of progression involving mutual exclusivity patterns, in particular
hard-exclusivity patterns. Shown in the left panel is a simple model picturing relations
among 4 genes. Shown in the center panel an explanation of a “branching“ progression
(i.e. progression involving a relation of the type gene to pattern): kras is predicted
to be the early event, kras mutated clones are subsequently selected for either (but
bot both) a mutation or a deletion of atm. Shown in the right panel an example of a
“branching“ progression followed by a “confluency“ (i.e. progression involving a relation
of the type pattern to gene): kras is predicted to be the early event, kras mutated clones
are subsequently selected for either (but not both) a mutation or a deletion of tgfbr2,
subsequently both clones with a mutation in tgfbr2 or a deletion of tgfbr2 will be
selected for deletion of gene atm. These model is taken from a progression inference study
for Colorectal Cancer.

mutant clones select for a clone harbouring one, or both, of mutations in
atm or in tp53“. A simple model, with an explanation of the meaning of
the two types of relations involving patterns (i.e. pattern to gene and gene
to pattern) is shown in Figure 4.2

Annotated on edges are represented confidence levels representing the
confidences of such edges, these confidence levels are colored red when at
least one of the three scores is over 0.01, colored blue otherwise.

4.4 Confidence estimation

For each reconstructed model we also performed confidence estimation via
bootstrap. In particular for each reconstructed model we performed two
types of bootstrap, namely non-parametric bootstrap and statistical bootstrap.

Non-parametric bootstrap is a bootstrapping procedure which performs
confidence estimation by sampling with replacement of the dataset, assuming
an uniform distribution of the samples.

Statistical bootstrap is a confidence estimation procedure which estimates
how CAPRI is sensitive to seed choice. In the reconstruction of progression
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Reconstructed model for subtype m1
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Figure 4.3: Reconstructed model for mRNA expression subtype m1.

models, random numbers based on a given initial seed are generated to eval-
uate the prima facie conditions; the statistical bootstrap technique assess the
sensitivity of the reconstructed models in relation to the choice of the initial
seed choice given a fixed input dataset.

This analysis was performed using libraries in the TRONCO tool with
these parameters:

Parameter Value Description

nboot 100 number of bootstrap iterations)
confidence npb, sb† bootstrap techniques
†npb: Non-Parametric Bootstrap, sb: Statistical Bootstrap

Graphically, confidence is represented by thickness of edges, in particular
more confident relations are represented by thicker edges.
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Reconstructed model for subtype m2
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Figure 4.4: Reconstructed model for mRNA expression subtype m2. Mutational events
are represented by nodes (with different colors denoting different types of alterations),
encircled with a color denoting the pathway/functional subgroup. Soft-exclusivity patterns
are represented with an orange symbol (box or circle, depending the type of selection: event
for pattern or pattern for events). The model could be interpreted to predict that: (i) no
general early event could be inferred, however 5 different subprogression were identified
having as first event, respectively, bap1, akt3, vhl, pbrm1 and 3p21.1(ii) bap1 mutant
clones are selected to acquire 9p21.3 deletions or any combination of tp53 mutations
or atm mutations, (iii) akt3 altered clones will select for a tsc2 mutation, (iii) vhl
mutant clones will select for amplification of 5q35.3, (iv) pbrm1 altered clones will select
for egfr mutations or setd2 mutations, the latter will in turn select for acquisition
of akt2 mutations, (v) clones with a deletion of 3p21.1 will select also for deletion of
3p21.31, in turn clones harboring both kdm5c mutations and a deletion of 3p21.31 will
select for deletion of 3p25.3. This last branch is particularly interesting because it shows
a sequence of events all related to arm 3p, which is considered important for CCRCC
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Chapter 5

Single-patient study

5.1 Somatic mutations and structural vari-

ants

In addition to the progression inference study based on the TCGA study, as
described in previous sections, we also performed a study based on multire-
gion sequencing data as given by [3].

For this study somatic mutation and arm-level CNAs data was available
for 10 patients, and for all these patients previous analysis was performed to
identify relevant events and also progression models. For each patient, data
for multiple regions was available, for this reason we considered each sample
as a separate dataset on which to infer progression models considering single
regions as samples.

Groups of somatic mutation events that were found to be indistinguish-
able were manually merged into a single event.

An example of extracted dataset is shown in Figure 5.1 Since we consid-
ered each patient separately and the number of regions for patient was quite
small (ie. about 10) we didn’t perform clustering and subtypes extraction.
We didn’t perform any event selection, since relevant genes and arms were
already identified in [3]. Finally we didn’t perform pattern selection because
of the reduced dimension of the datasets.

5.2 Reconstructed models and confidence

analysis

Since all and only relevant driver genes were identified in the main text we
performed no further selection, thus retaining the whole dataset.
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88% VHL(FS)/PBRM1(FS)

75% SETD2

62% 3p25.3−/8p23.2−

50% 1p36.11−/1q25.1+

38% 7q22.3+/8q24.21+/12p11.21+

38% PTEN

25% 9p21.3
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SNV
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Figure 5.1: Oncoprint for patient EV002 of the Single-Patient Study conducted in [3],
which analysed different regions of 10 patients. The dataset includes both somatic mu-
tations, for example patient EV002 harbour a Frame Shift event for gene setd2, and
arm-level CNAs. Since the size of the datasets is small we observed a large number of sta-
tistically undistinguishable events that we manually merged, for example for this dataset
we merged pbrm1:Frame Shift and vhl:Frame Shift.

Since a large number of genes were found to be indistinguishable, we
merged into single events groups of indistinguishable events in order to reduce
complexity of inferred models:

• EV001: For patient EV001 we merged 1p36.11:Loss and 14q31.1:Loss
into 1p36.11-/14q31.1-:Merged; 3p25.3:Loss and vhl:Frame Shift into
VHL(FS)/3p25.3-:Merged; 2q14.3:Gain and setd2:Splice site into
2q14.3+/setd2(SS):Merged;

• EV002: For patient EV002 we merged 1p36.11:Loss and 1q25.1:Gain
into 1p36.11-/1q25.1+:Merged; SETD2(SNV)/TP53(SNV):Merged and
5q35.3:Gain into SETD2(SNV)/TP53(SNV)/5q35.3+:Merged;

• EV003 For patient EV003 we merged 3p25.3:Loss and 5q35.3:Gain into
3p25.3-/5q35.3+:Merged; 9p21.3:Loss and 1q25.1:Gain into 9p21.3-
/1q25.1+:Merged;

• EV005: For patient EV005 we merged 3p25.3-/4q34.3-:Merged and
VHL(DEL)/PBRM1(FS):Merged into 3p25.3-/4q34.3-/VHL(DEL)/-
PBRM1(FS):Merged; 6q22.33:Loss and 5q35.3:Gain into 6q22.33-
/5q35.3+:Merged; 14q31.1:Loss and SF3B1:SNV into 14q31.1-/SF3B1-
(SNV):Merged;

• EV006: For patient EV006 we merged 3p25.3-/8p23.2-/14q31.1-:Merged
and 5q35.3:Gain into 3p25.3-/8p23.2-/14q31.1-/5q35.3+:Merged;

• RMH002: For patient RMH002 we merged 3p25.3:Loss and BAP1:Frame
Shift into 3p25.3-/BAP1(FS):Merged; 7q22.3+/20q13.33+:Merged and
TP53:Splice site into 7q22.3+/20q13.33+/TP53(SS):Merged
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• RMH004: For patient RMH004 we merged 3p25.3:Loss, 5q35.3:Gain
and vhl:Frame Shift into 3p25.3-/5q35.3+/VHL(FS):Merged; 4q34.3-
/8p23.2-/9p21.3-/14q31.1-:Merged, 1q25.1:Gain, 7q22.3:Gain, 20q13.33:Gain
and PBRM1(FS)/ATM(SC):Merged into 4q34.3-/8p23.2-/9p21.3-/14q31.1-
/1q25.1+/7q22.3+/20q13.33+/PBRM1(FS)/ATM(SC):Merged (in the
dataset termed as large-group:Merged); 2q14.3:Gain and 12p11.21:Gain
into 2q14.3+/12p11.21+:Merged;

• RMH008: For patient RMH008 we merged 3p25.3:Loss and 5q35.3:Gain
into 3p25.3-/5q35.3+:Merged;

• RK26: For patient RK26 we merged pbrm1:SNV, 1q25.1:Gain and
1p36.11:Loss into PBRM1(SNV)/1q25.1+/1p36.11-:Merged; 3p25.3:Loss
and 5q35.3:Gain into 3p25.3-/5q35.3+:Merged

We then performed reconstruction of progression models for each patient with
the same parameters used for the TCGA study:

Parameter Value Description

nboot 100 bootstrap iterations for Wilcoxon testing of se-
lective advantage scores (temporal priority and
probability raising)

regularization aic, bic† regularization techniques for likelihood fit
†aic: Akaike Information Criterion, bic: Bayesian Information Criterion

We also performed confidence analysis via bootstrap with the same parameters
used for the TCGA study:

Parameter Value Description

nboot 100 number of bootstrap iterations)
confidence npb, sb† bootstrap techniques
†npb: Non-Parametric Bootstrap, sb: Statistical Bootstrap

An example of reconstructed model is shown in Figure 5.2. We found that models
reconstructed with our pipeline, using CAPRI, were in compliance with models
predicted in the study.
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Reconstructed model for patient EV002
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Figure 5.2: Left panel: Reconstructed model for patient EV002. The model predicts that:
(i) vhl and/or pbrm1 (they are statistically indistinguishable) are the earliest event for
the progression of cancer, (ii) vhl/pbrm1 (both of type Frame Shift) mutated clones will
undergo selective pressure and will be selected for deletion of 3p25.3/8p23.2 and setd2
mutations (Frame Shift), (iii) clones with a deletion of 3p25.3/8p23.2 will be selected
also for a deletion of 9p21.3 and in turn an amplification of 5q35.3 and/or a mutation
of setd2/tp53 (both of type Single Nucleotide Variant), (iv) clones harboring both a
mutation of setd2 and a deletion of 3p25.3/8p23.2 will be selected for a deletion of
1p36.11 and/or an amplification of 1q25.1, which in turn will select for an amplification
of 7q22.3/8q24.21/12p11.21 or a mutation of pten (Splice site). The reconstructed
model has good compliance with the model for patient EV002, predicted in [3], shown in
the Right panel.
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Chapter 6

Conclusions

The advent of Next Generation Sequencing Technologies provided researchers huge
amounts of data, allowing them to tackle complex biologial phenomena like cancer
diseases.

In the context of the study of cancer is of fundamental importance the study
of tumorigenesis, the process of accumulation of mutations through which cancer
arises and progresses. The leading aspect to understand tumorigenesis is then to
identify relevant mutations, so-called drivers, and selective advantage relationships
between them in order to construct progression models able to explain the order
in which cancer progresses.

Various algorithms and techniques have been proposed to tackle this progres-
sion model inference problem, among which the CAPRI algorithm, developed by
the BIMIB group.

However certain characteristics of cancer hinders the ability of these techniques
to reconstruct progression models, namely tumor heterogeneity and the presence
of mutations irrelevant to the progression of the disease.

In this document we presented the implementation of a pipeline, designed in
the context of a real case study in which we applied the pipeline to study Clear
Cell Renal Cell Carcinoma, to conduct progression inference studies by integrating
various pre-existing tools in order to solve the many problems intrinsic in this type
of study (e.g. tumor stratification, selection of driver events, etc.). A secondary
goal of this pipeline was also to provide a guideline for researchers interested in
conducting similar studies.

6.1 Future works

Although our pipeline is, at the time of the writing of this document, already par-
tially automated, a direction for future development could be an engineering of the
pipeline, in order to ease researchers attempts to adapt it to their respective neces-
sities. However, for reasons intrinsic to this type of study a completely black-box
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implementation of the pipeline would be difficult to implement: different studies
usually have different data availability and relevance, some steps of the study may
need to be executed in a supervised fashion, etc.

Since our pipeline, as previously said, was specifically developed in the context
of a study of Clear Cell Renal Cell Carcinoma, a biological expert feedback would
be needed in order to validate the obtained results.
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