
Università degli Studi di Milano Bicocca

Dipartimento di Informatica, Sistemistica e Comunicazione

Corso di Laurea Magistrale in Informatica

Uncertainty Measures for Orthopairs
and Their Application to Clustering

Relatore: Davide Ciucci

Tesi di Laurea Magistrale di:

Andrea Campagner

Matricola 761976 

Anno Accademico 2016-2017



Contents

1 Introduction 3

2 Introduction to Orthopairs and Other Mathematical Prelim-
inaries 5
2.1 Introduction to Orthopairs . . . . . . . . . . . . . . . . . . . . 5
2.2 Order relations on Orthopairs . . . . . . . . . . . . . . . . . . 6
2.3 Operations on Orthopairs . . . . . . . . . . . . . . . . . . . . 8
2.4 Rough Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Fuzzy Sets and Intuitionistic Fuzzy Sets . . . . . . . . . . . . 12
2.6 Possibility Theory . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Uncertainty Measures for Single Orthopair 14
3.1 Boundary based Uncertainty Measure . . . . . . . . . . . . . . 14

3.1.1 Relationships with Uncertainty Measures for Intuition-
istic Fuzzy Sets . . . . . . . . . . . . . . . . . . . . . . 15

3.1.2 Relationships with Uncertainty Measure for Fuzzy Sets 19
3.2 Measures of Non-Specificity . . . . . . . . . . . . . . . . . . . 19
3.3 Measure of Inner Conflict (or Balancedness) . . . . . . . . . . 22
3.4 Uncertainty Measures, Ordering and Aggregation Operators . 24

4 Uncertainty Measures for Multiple Orthopairs 27
4.1 Generalizations of the Boundary based Measure . . . . . . . . 27
4.2 Rough Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Possibility Theory . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Conflict Measures . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5 Belief Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.6 Orthopartitions . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.6.1 Entropy on Orthopartitions . . . . . . . . . . . . . . . 45
4.6.2 Orderings on Orthopartitions . . . . . . . . . . . . . . 50
4.6.3 Mutual Information . . . . . . . . . . . . . . . . . . . . 51

5 Applications 54
5.1 Rough Clustering . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1.1 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Decision Tree Learning . . . . . . . . . . . . . . . . . . . . . . 62

5.2.1 Three-way Decision Tree Learning . . . . . . . . . . . . 63

1



5.2.2 Semi-supervised Decision Tree Learning . . . . . . . . . 67
5.3 Version Space Learning . . . . . . . . . . . . . . . . . . . . . . 69
5.4 Multiagent Consensus Formation . . . . . . . . . . . . . . . . 72

6 Conclusion and Future Works 74

2



1 Introduction

Uncertainty is a relevant issue in almost every field of human knowledge,
furthermore it is a multifaceted issue since various forms of uncertainty exist:
imprecision, ambiguity, vagueness, conflicting viewpoints.

In order to represent and manage uncertainty, over the years, a variety
of mathematical theories have been proposed, starting from classical Prob-
ability Theory and arriving, among others, to Rough Set Theory, Fuzzy Set
Theory, Intuitionistic Fuzzy Sets, Possibility Theory, Evidence Theory, Shad-
owed Sets.

A common concept, underlying some of these approaches, is a tripartition
of a universe: that is, the partitioning of a given universe of interest in three
different regions.

Orthopairs have been introduced by Ciucci in [9] and [10] as a simple and
general model to represent bipolar information, highlighting the connections
of this abstract representation with other proposed models of uncertainty
and also possible applications in the field of Granular Computing.

In order to allow a quantitative treatment of uncertainty, as highlighted by
Klir in [24], it is fundamental to introduce meaningful uncertainty measures
that could be used in order to quantify, manage and properly describe the
uncertainty in a given model.

The goal of this thesis was the development and analysis of uncertainty
measures for orthopairs, considering both:

• Measures that could be applied to quantify the uncertainty in a single
orthopair;

• Global measures that could be applied to quantify the aggregate un-
certainty in a collection of orthopairs;

It was also of interest considering:

• The properties of these measures in the context of orthopairs arising
from specific models (e.g. Rough Sets, Possibility Theory);

• Possible applications of the proposed measures.

The rest of this document is structured as follows:
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• In Section 2 we provide a brief introduction to orthopairs and ordering
and operations which can be defined on them, furthermore, we provide
an introduction to other uncertainty representation approaches that we
consider in the rest of the thesis;

• In Section 3 we propose uncertainty measures for a single orthopair,
introducing measures to represent and quantify various types of un-
certainty which could be represented with an orthopair (e.g. non-
specificity, bipolarity, ...) and we then study the properties of these
measures, primarily from a theoretical standpoint (by providing ax-
iomatic requirements that these measures should satisfy);

• In Section 4 we propose uncertainty measures to quantify, in an aggre-
gate way, the uncertainty in a collection of orthopairs, in particular we
propose a measure which is applicable to every such collections and we
then focus on collections of orthopairs arising from particular models
or axiomatic requirements;

• In Section 5 we propose a variety of possible applications of the mea-
sures introduced in the previous sections, in particular we focus on
applications of orthopairs and uncertainty measures to Clustering, also
showing some initial results obtained on real case studies;

• In Section 6 we summarize the obtained results and we highlight some
existing open problems and future works.
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2 Introduction to Orthopairs and Other

Mathematical Preliminaries

In this section we will provide a brief introduction to the mathematical con-
cepts which are used in this document, in particular:

• In Section 2.1 we will provide an introduction to the concept of an
orthopair;

• In Section 2.2 we will describe the main orderings definable on or-
thopairs;

• In Section 2.3 we will describe some mathematical operations definable
on orthopairs;

• In Section 2.4 we will provide a basic introduction to Rough Set Theory;

• In Section 2.5 we will provide a basic introduction to Fuzzy Set Theory
and Atanassov’s Intuitionistic Fuzzy Sets;

• In Section 2.6 we will provide a basic introduction to Possibility Theory.

2.1 Introduction to Orthopairs

Let U be the set of all the considered objects, we will refer to U as the
universe.

An orthopair over U is defined as a pair O = 〈P,N〉 such that:

• P,N ⊆ U ;

• P ∩N = ∅.

The names P and N stands, respectively, for positive and negative: or-
thopairs can, in fact, be used to represent positive or negative examples,
accepted and rejected objects and so on.

Starting from the two regions P and N we can define other subsets of U ,
namely:

• Bnd, also called boundary, defined as (P ∪N)c;

• Upp, defined as a N c or, equivalently, P ∪Bnd.
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The sets P , N and Bnd define a tripartion of the universe U , that is, they
partition the universe in three distinct regions: this concept of tripartition of
a universe is fundamental in a variety of mathematical frameworks that have
been developed in order to represent and manage uncertainty and granularity
of information, among these:

• Rough Sets;

• Interval Sets;

• Fuzzy and Shadowed Sets;

• Conditional Events;

and so on.
All these models could be seen as specific instantiations of the concept of

an orthopair that could be used in a variety of applications.
It is interesting to note that we can put orthopairs in bijection with so

called three-valued sets (equivalently, three-valued valuations) which can be
mathematically defined as a function f : U → {0, 1

2
, 1}.

Given an orthopair O = 〈PO, NO〉 we can define the corresponding three-
valued set fO as:

fO(x) =


1 x ∈ PO
0 x ∈ NO

1
2

x ∈ BndO
Viceversa, given a three-valued set f we can define an orthopair Of as

〈{x|f(x) = 1}, {x|f(x) = 0}〉.
This bijection is interesting because it allows to directly translate mathe-

matical properties that have been defined on three-valued sets, in particular
related to orderings and operations, to the orthopair setting.

We can furthermore, given a universe U , define O(U) as the collection of
all orthopairs definable on U .

2.2 Order relations on Orthopairs

Since, as we previously noted, we can put orthopairs in correspondence with
three-valued sets, we can reduce the problem of defining an ordering on
orthopairs to that of defining an order on the set {0, 1

2
, 1}.
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The most basic of these orderings is the usual one (i.e. 0 < 1
2
< 1), also

called truth ordering and denoted as ≤t.
When translated to orthopairs this ordering is defined as:

O1 ≤t O2 iff P1 ⊆ P2 ∧N2 ⊆ N1

The name of this ordering stems from the fact that P increases and N de-
creases along the ordering, that is, the “truthness” of the ortopair increases.

Apart from this basic ordering we can define two so called one-sided
information orderings ≤N and ≤P as, respectively, 1

2
< 1 < 0 and 1

2
< 0 < 1

that, when translated to orthopairs can be defined as:

O1 ≤N O2 iff N1 ⊆ N2 ∧Bnd2 ⊆ Bnd1

O1 ≤P O2 iff P1 ⊆ P2 ∧Bnd2 ⊆ Bnd1

From these two orderings we can further define a partial order, termed in-
formation ordering ≤I defined on three values as 1

2
< 0 ∧ 1

2
< 1 that, when

translated to orthopairs can be defined as:

O1 ≤I O2 iff P1 ⊆ P2 ∧N1 ⊆ N2

It can be easily seen that, in each of ≤P ,≤N and ≤I , the size of the boundary
decreases along the ordering, hence the name information ordering since a
reduction of the boundary corresponds to an increase in the “informativity”
of the orthopair.

We can finally define other two partial orderings, ≤PB and ≤NB, as

0 <
1

2
∧ 0 < 1 and 1 <

1

2
∧ 1 < 0

that can be translated to orthopairs as:

O1 ≤PB O2 iff P1 ⊆ P2 ∧Bnd1 ⊆ Bnd2

O1 ≤NB O2 iff N1 ⊆ N2 ∧Bnd1 ⊆ Bnd2
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2.3 Operations on Orthopairs

The orderings defined in the preceding section define algebraic structures on
the set O(U) of all the orthopairs defined on universe U , with corresponding
operations that allow to aggregate orthopairs in different ways.

The ordering ≤t defines a lattice in which the join and the meet are
defined, respectively, as:

〈P1, N1〉 tt 〈P2, N2〉 = 〈P1 ∪ P2, N1 ∩N2〉

〈P1, N1〉 ut 〈P2, N2〉 = 〈P1 ∩ P2, N1 ∪N2〉

Similarly, also the two one-sided information orderings define a lattice in
which we can define the join and the meet as:

〈P1, N1〉 tP 〈P2, N2〉 = 〈P1 ∪ P2, N1 \ P2 ∪N2 \ P1〉

〈P1, N1〉 tN 〈P2, N2〉 = 〈P1 \N2 ∪ P2 \N1, N1 ∪N2〉

〈P1, N1〉 uP 〈P2, N2〉 = 〈P1 ∩ P2, N1 ∩N2 ∪ ((N1 ∩ P2) ∪ (N2 ∩ P1))〉

〈P1, N1〉 uN 〈P2, N2〉 = 〈P1 ∩ P2 ∪ ((N1 ∩ P2) ∪ (N2 ∩ P1), N1 ∩N2)〉

Remark 1. In the many-valued logic setting these operations are known,
respectively, as:

• The operations tt, ut are called Kleene conjunction and disjunction
[23];

• The operations tN , tP are called Sobocinski conjunction and dis-
junction [46];

• The operations uN , uP are called weak Kleene conjunction and
disjunction [23].

The three partial orders ≤I , ≤PB and ≤NB on the other hand do not
define a lattice but only a (meet) semi-lattice:
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〈P1, N1〉 uI 〈P2, N2〉 = 〈P1 ∩ P2, N1 ∩N2〉

〈P1, N1〉 uPB 〈P2, N2〉 = 〈P1 ∩ P2, N1 ∪N2 ∪ (Bnd1 ∩ P2) ∪ (Bnd2 ∩ P1)〉

〈P1, N1〉 uNB 〈P2, N2〉 = 〈P1 ∪ P2 ∪ (Bnd1 ∩N2) ∪ (Bnd2 ∩N1), N1 ∩N2〉

When defined (i.e. when (P1 ∩N2) ∪ (P2 ∩N1) = ∅) the join corresponding
to the ≤I ordering is:

〈P1, N1〉 tI 〈P2, N2〉 = 〈P1 ∪ P2, N1 ∪N2〉

Apart from these lattice and semi-lattice operations we can also define three
unary negation operations based on the ≤t ordering that extend the classic
boolean negation:

¬〈P,N〉 = 〈N,P 〉

∼ 〈P,N〉 = 〈N,N c〉

−〈P,N〉 = 〈P c, P 〉

We can also define negation operations starting from the two other com-
plete orderings:

¬N〈P,N〉 = 〈P,Bnd〉

∼N 〈P,N〉 = 〈∅, Bnd〉

−N〈P,N〉 = 〈∅, P ∪Bnd〉

¬P 〈P,N〉 = 〈Bnd,N〉

∼P 〈P,N〉 = 〈Bnd, ∅〉
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−P 〈P,N〉 = 〈N ∪Bnd, ∅〉
Furthermore we can also define a consensus operator as:

〈P1, N1〉 � 〈P2, N2〉 = 〈P1 \N2 ∪ P2 \N1, N1 \ P2, N2 \ P1〉
We can also give a generalization of the cartesian product to orthopairs as:

〈P1, N1〉 × 〈P2, N2〉 =〈P1 × P2, (N1 ×N2) ∪ (N1 × P2)∪
(N1 ×Bnd2) ∪ (N2 × P1) ∪ (N2 ×Bnd1)〉

from which we can define an orthorelation as an orthopair R over universe
U × U s.t. R ≤t O1 ×O2.

We can explain the definition given for the cartesian product as follows:

• If both the orthopairs agree on assigning a given object x ∈ U to the
respective P sets, then x should be considered positive (hence in P )
also by their combination;

• If at least one of the two orthopairs is uncertain on the assignement
of x (that is, x ∈ Bnd1 ∪ Bnd2) and no one of the orthopairs assigns
x to N , then the status of x is uncertain (hence it is in Bnd) in their
combination;

• If at least one of the two orthopairs assigns x to N then x cannot
possibly be positive in their combination, thus x can only be assigned
to N also in the combination of the two orthopairs.

2.4 Rough Sets

In this section we will provide a basic introduction to Rough Set Theory, as
conceived by Pawlak in [39].

Let U be a universal set and R a binary relation on U , we call the pair
〈U,R〉 an approximation space.

Given an element x ∈ U we define the granule generated by R for x as
gR(x) = {y ∈ U |xRy}.

Given a subset A of U we can define its lower approximation as:

l(A) = {x ∈ U |gR(x) ⊆ A}
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its upper approximation as:

u(A) = {x ∈ U |gR(x) ∩ A 6= ∅}

and its exterior region as:

e(A) = u(A)c.

The meaning usually assigned to this regions is the following:

• The lower approximation l(A) is considered as the set of objects x ∈ U
that certainly belong to A;

• The upper approximation u(A) is considered as the set of objects x ∈ U
that possibly belong to A;

• The exterior region e(A) is considered as the set of objects x ∈ U that
certainly do not belong to A.

If the relation R is serial (i.e. ∀x ∈ U∃y st xRy) then it holds that
l(A) ⊆ u(A) and the pair 〈l(A), u(A)〉 is called the rough approximation of
A or, simply, a rough set.

It is easy to observe that the equivalent representation 〈l(A), e(A)〉, given
in terms of the exterior region, is an orthopair; thus, the collection of all
rough sets on universe U induced by relation R is a subset of the collection
of all orthopairs O(U) defined on U .

Since their introduction various applications of Rough Set Theory have
been suggested, in particular:

• Rule induction, that is, the process of extracting decision rules from a
set of observation;

• Feature Selection, that is, the process of selecting a set of relevant and
non-redundant features for a given set of observations.

with a variety of real-life applications (for a recent survey, see [53]).
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2.5 Fuzzy Sets and Intuitionistic Fuzzy Sets

Fuzzy Sets have been introduced by Zadeh in [51] as a generalization of
classical, or crisp, sets.

A fuzzy set A, on a universal set U , is given by the pair

〈U, µA〉

where µ : U → [0, 1], thus a fuzzy set can be easily seen as a generalization
of the caracteristic function representation of a set.

For each x ∈ U and fuzzy set A, the value µA(x) is called membership
degree of x in A.

Given a value α ∈ [0, 1] and a fuzzy set A, we can define the α − cut of
A as follows:

αA = {x ∈ U |µA(x) ≥ α}

It can be easily seen that orthopairs, given ther bijective correspondence
with three-valued sets, can be seen as a restricted form of fuzzy sets.

Various generalizations of fuzzy sets have been proposed, among these
Atanassov in [4] proposed Intuitionistic Fuzzy Sets (IFS) as a mean to rep-
resent vague bipolar information, this is obtained by explicitly representing,
alongside the membership function, also a non-membership function.

Formally, given a universe U , an IFS over U is defined as the triple

A = 〈U, µA, νA〉

where µA, νA : U → [0, 1] s.t. ∀x ∈ U µA(x) + νA(x) ≤ 1.
It can easily be seen that orthopairs represent precisely the non-fuzzy

IFS, that is the IFS for which µA and νA are restricted over codomain {0, 1}.

2.6 Possibility Theory

Given a universal set U a possibility distribution (pd) over U is a function
π : U → [0, 1], it is called Boolean (bpd) if its codomain is restricted to set
{0, 1}.

In the context of this work we will specifically consider, given a set of
propositional (i.e. boolean) variables P , the universe of all the valuations
that we can define on P , that is:
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Ω = {ω : P → {0, 1}}

To each orthopair O = 〈P,N〉 we can associate a bpd as follows:

πO(ω) =

{
1 ω |=

∧
a∈P a ∧

∧
a∈N ¬a

0 otherwise

It can be shown however that this correspondence is not a bijection,
that is, there exists bpds that cannot be represented as orthopairs (in fact
orthopairs can only represent hyper-rectangular bpds).

In [11] Ciucci et al. showed, however, that every bpd can be represented
as a collection of orthopairs.
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3 Uncertainty Measures for Single Orthopair

In this Section we are going to present and study a variety of uncertainty
measures defined for a single orthopair, in particular:

• In Section 3.1 we are going to introduce the most basic uncertainty
measure definable on an orthopair, based on the relative size of the
associated boundary, showing also some axiomatic justifications for this
measure by showing relationships with existing measures defined for
Fuzzy and Intuitionistic Fuzzy Sets;

• In Section 3.2 we will study some proposed measure of non-specificity
when restricted to the case of orthopairs;

• In Section 3.3 we will introduce and study a measure of the balanced-
ness of the information contained in an orthopair;

• In Section 3.4 we will study properties of the previously introduced
uncertainty measures w.r.t. the orderings and operations introduced in
Section 2.

3.1 Boundary based Uncertainty Measure

Let O = 〈P,N〉 be an orthopair defined on a universe U .
The uncertainty contained in O is usually represented by its boundary,

as such this uncertainty can depend on the specific interpretation we give
to the boundary (fuzziness vs lack of information) and the specific kind of
uncertainty that we are interested in representing.

In order to quantify the amount of uncertainty embodied by O it is fun-
damental to define a measure of this uncertainty.

The most basic measure of uncertainty is

EO(O) =
|Bnd|
|U |

This measure emerges in other contexts, for example as a possible measure
of roughness in rough set theory. Furthermore in the following we will also
show that measures of uncertainty defined in more general theories (e.g. fuzzy
set theory and intuitionistic fuzzy sets) are equal to EO when restricted to
orthopairs.
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3.1.1 Relationships with Uncertainty Measures for Intuitionistic
Fuzzy Sets

In [38] Pal et al. distinguish two different types of uncertainty in an Intu-
itionistic Fuzzy Set:

• Fuzziness ;

• Lack of Knowledge.

In order to quantify the first type of uncertainty the authors introduce
a set of axioms, characterizing possible uncertainty measures, which are not
meaningful when restricted to orthopairs as they contraint the candidate
entropy function to be the constant zero function.

On the other hand these axioms have been inspired by the axioms in-
troduced by Szmidt and Kacprzyk in [48] that can be directly applied to
orthopairs:

(Ax I1) E(O) = 0 iff A ∈ 2X ;

(Ax I2) E(O) = 1 iff ∀x ∈ X, χP (x) = χN(x);

(Ax I3) E(O1) ≤ E(O2) if ∀x ∈ X,

χP1(x) ≤ χP2(x) and χN1(x) ≥ χN2(x) for χP2(x) ≤ χN2(x),

χP1(x) ≥ χP2(x) and χN1(x) ≤ χN2(x) for χP2(x) ≥ χN2(x);

(Ax I4) E(O) = E(Oc)

where (P,N)c = ¬(P,N).
In order to quantify the second type of uncertainty, the authors in [38]

introduce the following set of axioms:

(Ax I5) I(O) = 0 iff ∀x ∈ X, χP (x) + χN(x) = 1

(Ax I6) I(O) = 1 iff ∀x ∈ X, χP (x) = χN(x) = 0

(Ax I7) I(O1) ≥ I(O2) if ∀x ∈ X, χP1(x) + χN1(x) ≤ χP2(x) + χN2(x)

(Ax I8) I(O) = I(Oc)

where, as before, (P,N)c = ¬(P,N).
On orthopairs, the two sets of axioms turn out to be equivalent [6]:
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Theorem 1. Let E : O(X) → [0, 1] be a function. Then E satisfies axioms
I1-I4 iff it satisfies axioms I5-I8.

Proof. An orthopair O is a set (i.e. BndA = ∅) if O is a fuzzy set, therefore
axioms I1 and I5 are equivalent.

Axioms I2 and I6 are equivalent since χP (x) = χN(x) implies χP (x) =
χN(x) = 0. Let O1,O2 be two orthopairs.

Let E such that it satisfies axioms I5-I8.
Let us suppose, without loss of generality, that ∀xχP2(x) ≤ χN2(x) and

χP1(x) ≤ χP2(x) e χN1(x) ≥ χN2(x), we can distinguish two cases:

• χP2(x) = χN2(x) = 0, in this case χP1(x) = 0 e χN1(x) ≥ 0, therefore
χP1(x) + χN1(x) ≥ χP2(x) + χN2(x);

• 0 = χP1(x) ≤ χN1(x) = 1, in this case χP1(x) = 0 e χN1(x) = 1,
therefore χP1(x) + χN1(x) ≥ χP2(x) + χN2(x).

In conclusion axiom I3 implies axiom I7, therefore if E satisfies axiom I7 it
also satisfies axiom I3.

Viceversa, let E such that it satisfies axioms I1-I4. Let O1, O2 be two
orthopairs and let x ∈ U , furthermore suppose that χP1(x) + χN1(X) ≥
χP2(x) + χN2(x).

If χP1(x) = χP2(x) e χN1(x) = χN2(x) or if χP1(x) + χN1(x) > χP2(x) +
χN2(x) then, evidently, the two orthopairs satisfy axiom I3.

On the other hand, consider the case in which χP1(x) = ν(B) = 1 e
χN1(x) = χP2(x) = 0, we therefore have that the two orthopairs do directly
satisfy the inequalities stated in axiom I3.

However, since by assumption E satisfies axiom I4, and specifically it
holds that E(O2) = E(Oc

2), we have that χcN2
(x) = 0 and χcP2

(x) = 1,
therefore the two orthopairs satisfy the inequalities stated in axiom I3.

The case for which χP1(x) = χN2(x) = 0 e χN1(x) = χP2(x) = 1 is similar,
therefore if E satisfies axiom I3 it satisfies axiom I7, hence the result.

It is easy to verify that the proposed measure EO satisfies both sets of
axioms, furthermore we can prove that, up to constants, it is the only function
to satisfy them.

In [38] the authors prove the following result:

Lemma 1. Let g : {0, 1} → {0, 1} be a function. Then G : O(U) → [0, 1]
defined as G(O) = k

∑
x∈U g(χP (x) + χN(x)) satisfies I5-I8 iff g(1) = 0 and

g(0) = 1.
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We can then prove the following result [6]:

Theorem 2. EO is the only function in the form k
∑

x∈U g(χP (x) + χN(x))
satisfying axioms I5-I8 (thus, also axioms I1-I4), up to a multiplicative con-
stant.

Proof. Obviously EO is in the form required by the preceding Lemma, with
k = 1

|U | and g(x) = 1− (χP (x) + χN(x)).

Furthermore, given a generic function g′ satisfying the requirements of
the preceding lemma, we can rewrite:

k
∑

x∈U g
′(χP (x) + χN(x)) = k

∑
x∈P∪N g(1) + k

∑
x∈Bnd g(0) =

k
∑

x∈Bnd 1 = k|Bnd|
which, choosing k = 1

|U | , is exactly the definition of EO, hence the result.

To further draw a comparison between uncertainty measures proposed for
IFS and orthopairs we can study the several definitions of entropy satisying
axioms I1-I4 or I5-I8 that have been given.

In particular we will consider the list of measures surveyed by Zhang in
[52], and we can divide these measures in two groups.

The measures in the first group, when restricted to orthopairs, are equiv-
alent to EO:

• EBB(o) = 1
|X|
∑

x∈X χBndo(x) = EO(o);

• ESK(o) = 1
|X|
∑

x∈X
min(χPo (x),χNo (x))+χBndo (x)

max(χPo (x),χNo (x))+χBndo (x)
= EO(o);

• EZL(o) = 1− 1
|X|
∑

x∈X |χPo(x)− χNo(x)| = EO(o);

• EV S(o) = − 1
|X|ln2

∑
x∈X [χPo(x)lnχPo(x) + χNo(x)lnχNo(x) − (1 −

χBndo(x))ln(1− χBndo(x))− χBndo(x)ln2] = EO(o);

• EY 1(o) = 1
|X|
∑

x∈X {{sin[π
4
(1 +χPo(x)−χNo(x))] + sin[π

4
(1−χPo(x) +

χNo(x))]− 1} 1√
2−1
} = EO(o);

• EY 2(o) = 1
|X|
∑

x∈X {{cos[
π
4
(1 +χPo(x)−χNo(x))] + cos[π

4
(1−χPo(x) +

χNo(x))]− 1} 1√
2−1
} = EO(o);

• E(o) = 1 − 1
|X|
∑

x∈X [
√

2(χPo(x)− 0.5)2 + 2(χNo(x)− 0.5)2 −
χBndo(x)] = EO(o)
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The measures in the second group on the other hand, when restricted to
orthopairs, reduce to the constant zero function 0(x) = 0:

• EZJ(o) = 1
|X|
∑

x∈X
min(χPo (x),χNo (x))

max(χPo (x),χNo (x))
= 0;

• EZ1(o) = 1−
√

2
|X|
∑

x∈X [(χPo(x)− 0.5)2 + (χNo(x)− 0.5)2] = 0;

• EZ2(o) = 1− 1
|X|
∑

x∈X [|χPo(x)− 0.5|+ |χNo(x)− 0.5|] = 0;

• EZ3(o) = 1− 2
|X|
∑

x∈X max(|χPo(x)− 0.5|, |χNo(x)− 0.5|) = 0;

• EZ4(o) = 1−
√

4
|X|
∑

x∈X max(|χPo(x)− 0.5|2, |χNo(x)− 0.5|2) = 0;

• EZ5(o) = 1 − 2
|X|
∑

x∈X
|χPo (x)−0.5|+|χNo (x)−0.5|

4
+

max(|χPo (x)−0.5|,|χNo (x)−0.5|)
2

= 0;

• E2
hc(o) = 1

|X|
∑

x∈X [1− χPo(x)2 − χNo(x)2 − χBndo(x)2] = 0;

• E1/2
r (o) = 2

|X|
∑

x∈X ln[χPo(x)1/2 − χNo(x)1/2 − χBndo(x)1/2] = 0;

Furthermore, in [19], Guo defines axiomatically a so called measure of
knowledge in order to measure the knowledge, understood as the complement
to the entropy as given by axioms I1-I4, containted in an IFS.

The axioms for this measure can be directly defined as the negation of
the axioms I1-I4, hence we can directly derive the following result:

Proposition 1. Let E : O(U) → [0, 1] be a function, then E is an uncer-
tainty measure according to axioms 1-4 iff 1 − E is a knowledge measure
according to [19].

Guo also proposes a measure satisfying his set of axioms, namely:

K(O) = 1− 1

2|U |
∑
x∈U

(1− |χP (x)− χN(x)|)(1 + χBnd(x))

which it is easily proved equivalent to 1−EO when restricted to orthopairs

18



3.1.2 Relationships with Uncertainty Measure for Fuzzy Sets

Harnessing the bijection between orthopairs and three valued sets we can
view orthopairs as restricted forms of fuzzy sets and translate measures of
uncertainty introduced in Fuzzy Set Theory to the orthopair context.

The classical measure of uncertainty in fuzzy set theory, known as
Entropy or Fuzziness, has been defined by De Luca and Termini [33] as
a non-probabilistic measure inspired by the well-known Shannon Entropy.

Their definition is given axiomatically, defining a set of axioms that every
measure of fuzziness should satisy:

(Ax F1) E(A) = 0 iff A is a crisp set

(Ax F2) E(A) = 1 iff ∀x ∈ X. µA(x) = 0.5

(Ax F3) E(A) ≤ E(B) if µA(x) ≤ µB(x) when µB(x) ≤ 0.5 and µA(x) ≥
µB(x)

(Ax F4) E(A) = E(Ac)

Obviously, when restricted to orthopairs, these axioms are equivalent to
axioms I5-I8 given for IFS.

The authors, in [33], also define the following family of fuzziness measures:

Ek(A) = k[
∑
x∈X

µA(x)log(
1

µA(x)
) +

∑
x∈X

(1− µA(x))log(
1

1− µA(x)
)]

.
for which we can easily prove the following result [6]:

Proposition 2. Let O be an orthopair defined on universe U , then EO(O) =
Ek(O) with k = 1

|U | .

3.2 Measures of Non-Specificity

Hartley introduced in [21] a simple measure of the information, or uncer-
tainty, contained in a set known as non− specificity and defined for a clas-
sical set A as:

H(A) = log2|A|
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this definition has later been extended by Klir [24] [26] in the framework
of Generalized Information Theory to more general contexts, like fuzzy
sets and Possibility Theory.

Since, as previously said, we can see an orthopair as a three-valued set,
that is a restricted form of fuzzy sets, we directly apply the measure of non-
specificity defined by Klir for a fuzzy set O:

HKlir(O) =

∫ 1

0

log|αO|dα

to orthopairs, in which case we can simplify the above expression to:

HKlir(O) =

∫ 1/2

0

log|αO|dα +

∫ 1

1/2

log|αO|dα =
1

2
log|P ∪Bnd|+ 1

2
log|P |

We can observe the following basic facts about the measure HKlir when
applied to an orthopair O = 〈P,N〉 [6]:

• When P = ∅ the measure is not well defined;

• In the case Bnd = ∅ (i.e. O is a crisp set) HKlir coincides with Hartley
measure H, in particular it is maximized when P = U in which case it
holds that HKlir(O) = log2|U |;

• When O = 〈{x}, U \ {x}〉 the value of the measure is minimized and
equal to 0.

In [47] Song et al. similarly defined a measure HIFS of non-specificity for
IFS that we can also apply to orthopairs.

Their definition is given, for an IFS O defined on an universe U =
{x1, ..., xn}, via the following definition:

1. Let α = max{µO(x1), ..., µO(xn)} and let x∗ be such that µO(x∗) = α;

2. ∀x 6= x∗ define MO(x) = min{α, 1− νO(x)};

3. HIFS = log2[n+
∑

x 6=x∗(MO(x)− α)].

When restricted to the case of orthopairs we can prove the following
result:
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Proposition 3. Let O = 〈P,N〉 be an orthopair defined on universe U , then:

HIFS(O) =

{
log2(|P |+ |Bnd|) P 6= ∅
log2(|U |) otherwise

.

Proof. If P 6= ∅ then α = 1 and for each x we have that MO(x) = 1−χN(x).
We can then rewrite HIFS(O) = log2[|U |+

∑
χN (x)=0 0 +

∑
χN (x)=1−1] =

log2(|U | − |N |) = log2(|P |+ |Bnd|).
Otherwise we have that α = 0 and therefore ∀x x ∈ Bnd∨x ∈ N , thus ∀x

MO(x) = 0, consequently we have HIFS(O) = log2(U), hence the result.

The measure HIFS has the following basic properties [6]:

• The measure is minimized, with value 0, exactly when HKlir is mini-
mized, that is, when O = 〈{x}, U \ {x}〉;

• The measure is maximized, with value log2(|U |), when P ∪ Bnd = U
or when P = ∅.

A further comparison between the two measures of non-specificity can be
given in terms of the requirements, stated by Klir in [24], that an information-
based uncertainty measure U should satisfy:

1. Range, the measure is restricted to the range [0,M ] where M is a
constant;

2. Continuity;

3. Expansitivity or Expansibility, addition to U of elements not sup-
ported by evidence should not modify the value of measure;

4. Monotonicity, with respect to some ordering;

5. Consistency, if the measure can be computed in more than one way
all these must give the same result;

6. Subadditivity, given an orthorelation R ≤t O1×O2 on two orthopairs
O1, O2 it must hold that U(R) ≤ U(O1) + U(O2);

7. Additivity, U(O1 ×O2) = U(O1) + U(O2).

We can prove the following results:
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Proposition 4. HKlir satisfies all the requirements stated above.

Proof. Range, Continuity, Expansibility and Consistency are obviously
satisfied; furthermore the measure is monotone wrt ordering ≤t.

As regards additivity we have:
HKlir(O1×O2) = 1

2
log(|P1||P2|+|P1||Bnd2|+|P2||Bnd1|+|Bnd1||Bnd2|)+

1
2
log(|P1||P2|) = 1

2
log((|P1|+ |Bnd1|)(|P2|+ |Bnd2|)) + 1

2
log|P1|+ 1

2
log|P2| =

1
2
log((|P1|+|Bnd1|)+ 1

2
log((|P2|+|Bnd2|)+ 1

2
log|P1|+ 1

2
log|P2| = HKlir(O1)+

HKlir(O2).
As regards subadditivity, given two orthopairs O1, O2 and any orthore-

lation R ≤t O1 × O2 we know that PR ⊆ PO1×O2 , therefore HKlir(R) ≤
HKlir(O1) +HKlir(O2).

Proposition 5. HIFS satisfies only Range, Continuity, Expansibility and
Consistency.

Proof. Range, Continuity, Expansibility and Consistency are obviously
satisfied.

The measure is not monotone w.r.t to any of the orderings defined in
Section 2.2.

As regards additivity, we have that, in the case either P1 or P2 is empty,
we have that HIFS(O1 × O2) = log2(|U |) ≤ HIFS(O1) + HIFS(O2) therefore
HIFS is not additive.

As regards non-subadditivity, letO1 = O2 = (U\{x}, x) be two orthopairs
for some x ∈ U and R = (∅, ({x}×U \{x})∪(U \{x}×{x})) ≤t (U \{x}×U \
{x}, ({x}×U \{x})∪(U \{x}×{x})) = O1×O2 be an orthorelation, then we
have that PR = ∅, HIFS(R) = log|U | ≥ HIFS(O1)+HIFS(O2) = 2log(|U |−1),
therefore HIFS is not subadditive.

Remark 2. Apart from these axiomatic justifications, HKlir is also pre-
ferrable to HIFS from an intuitive point of view, since it gives a greater
weight to P which seems natural when dealing with non-specificity.

3.3 Measure of Inner Conflict (or Balancedness)

The measures that we precedently introduced and studied all measure the
uncertainty or information (or lack thereof) in an orthopair, in a form or
another.
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Since orthopairs represent a form of bipolar knowledge; that is, where
positive and negative information are explicitly distinct; it is of interest a
measure of the balancedness of this information.

We can define such a measure as follows: let O = 〈P,N〉 be an orthopair,
m = min{|P |, |N |} and M = max{|P |, |N |}, then we can define the balance
or inner conflict of O as

CI(O) =
m

M

From the following facts we can observe that this measure is well behaved
as a measure of balance:

• CI(O) is maximized, with value 1, when |P | = |N |;

• CI(O), is minimized, with value 0, when m = 0 6= M .

It is also to note that when Bnd = U CI(O) is undefined, this is also an
appealing property since if we have neither positive or negative information
we cannot say anything about the balancedness of this same information
(furthermore this also distinguish this situation from the situation of perfect
imbalance, in which CI assumes value 0).
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3.4 Uncertainty Measures, Ordering and Aggregation
Operators

In this section we will study how uncertainty, as defined via the preceding
measures (in particular measure EO), propagates along the various order-
ings and operations introduced in Section 2. We can observe the following
behaviors of EO wrt the orderings previously defined [6]:

Proposition 6. Uncertainty measure EO is:

1. Not monotonic wrt ordering ≤t;

2. Antitone wrt orderings ≤P , ≤N , ≤I ;

3. Isotone wrt orderings ≤PB, ≤NB.

Proof. 1. We provide an example: Let U = {1, 2, 3} be a universe
andO1 = (∅, U) ≤t O2 = (∅, {1, 2}) ≤t O3 = ({1}, {2}) be three
orthopairs defined on U , then EO(O1) = 0 ≤ EO(O2) = 1

3
but

EO(O2) = 1
3
≥ EO(O3) = 0; hence the measure is not monotone.

2. The size of the boundaries decrease along the ordering;

3. The size of the boundaries increase along the ordering.

As regards non-specificity measures HKlir and HIFS we showed in Section
3.2 that the first is isotone w.r.t. to ordering ≤t, while the second is not
monotone w.r.t. any of the ordering defined in Section 2.2.

We can furthermore easily observe that HKlir is not monotone w.r.t. or-
dering ≤I since, considering universe U = {1, 2, 3}, we have:

• O1 = 〈{1}, {3}〉 ≤I O2 = 〈{1}, {2, 3}〉 but HKlir(O1) > HKlir(O2), thus
HKlir is not isotone w.r.t. ≤I ;

• O1 = 〈{1}, {3}〉 ≤I O2 = 〈{1, 2}, {3}〉 and HKlir(O1) < HKlir(O2),
thus HKlir is not antitone w.r.t. ≤I .

Finally, as regards imbalance measure CI it can be easily seen that it is
non-monotone wrt all the previously defined orderings.

However this measure exhibits an interesting behavior wrt to ordering ≤t
that is akin to unimodality, in particular:
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Proposition 7. Let U be a finite universe, and consider any path from the
bottom ⊥ (i.e. 〈∅, U〉) to the top > (i.e. 〈U, ∅〉) in the lattice on U determined
by ordering ≤t which does not include orthopair 〈∅, ∅〉.

Then, there exists an orthopair M on the path, st ⊥ ≤t M ≤t > and CI
is isotone wrt ≤t for orthopairs O ≤t M and antitone wrt ≤t for orthopairs
O ≥t M .

We can furthermore study the behaviour of measure EO wrt the opera-
tions introduced in Section 2.3.

Proposition 8. [6] Let O1 = (P1, N1), O2 = (P2, N2) be two orthopairs
defined on universe U .We have that the following properties hold:

1. EO(O1 ut O2) = |Bnd1∩P2|+|Bnd2∩P1|+|Bnd1∩Bnd2|
|U | ≤ EO(O1) + EO(O2);

2. EO(O1 tt O2) = |Bnd1∩N2|+|Bnd2∩N1|+|Bnd1∩Bnd2|
|U | ≤ EO(O1) + EO(O2);

3. EO(O1), EO(O2) ≤ EO(O1 uN O2) ≤ EO(O1) + EO(O2);

4. EO(O1), EO(O2) ≤ EO(O1 uP O2) ≤ EO(O1) + EO(O2);

5. EO(O1 tN O2) ≤ min(EO(O1), EO(O2));

6. EO(O1 tP O2) ≤ min(EO(O1), EO(O2));

7. EO(O1), EO(O2) ≤ EO(O1uIO2) ≤ EO(O1)+EO(O2)+ |P1∩N2|
|U | + |P2∩N1|

|U | ;

8. EO(O1 tI O2) ≤ min(EO(O1), EO(O2));

9. EO(O1 \O2) = |Bnd1∩Bnd2|+|Bnd1∩N2|+|P1∩Bnd2|
|U | ;

10. EO(O1 	O2) ≥ E(O1);

11. EO(O1 �O2) = |P1∩N2|+|P2∩N1|+|Bnd1∩Bnd2|
|U | .

As can be easily noted we can observe that:

• As regards operations tN , tP , tI the resulting uncertainty is less than
the uncertainty of the operands;

• As regards operations uN , uP , it is less than their sum but greater
than the operands’;
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• As regards operations ut, tt, it can be either greater or lesser than the
operands but is always lesser than their sum;

• As regards operation uI , the resulting uncertainty is greater than the
operands’, but it can be greater or lesser that their sum (in particular,
in the case that O1, O2 are not in conflict, we have that EO((P1, N1)uI
(P2, N2)) ≤ EO(O1) + EO(O2));

• As regards operation �, it is in general incomparable to both EO(O1)
and EO(O2).
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4 Uncertainty Measures for Multiple Or-

thopairs

In the following section we will study how to define a global uncertainty
measure, or global entropy, for a collection (i.e. sets) of orthopairs O instead
of single orthopairs, in particular:

• In Section 4.1 we will introduce two generalization of the boundary
based measure, introduced in Section 3.1, to the context of a collection
of orthopairs;

• In Section 4.2 we will study the behaviour of the measure introduced in
4.1 when the collection of orthopairs is generated by an approximation
space, in the context of Rough Set Theory;

• In Section 4.3 we will introduce a measure of uncertainty for collection
of orthopairs in the context of possibility theory, then we will also study
the behaviour of the measure introduced in 4.1 in Possibility Theory;

• In Section 4.4 we will introduce some uncertainty measures to quantify
the degree of conflict among a collection of orthopairs;

• In Section 4.5 we will introduce and study uncertainty measures for
collections of orthopairs in the context of the theory of Belief Pairs,
introduced by Lawry in [28];

• In Section 4.6 we will describe a generalization of the concept of a
partition to orthopairs and then we will use this concept to generalize
classical information-theoretic uncertainty measures to collections of
orthopairs.

4.1 Generalizations of the Boundary based Measure

The simplest approach to obtain such a measure is, given a collection O =
{O1, ..., On} of orthopairs, to define a probability distribution PO on O and
define the uncertainty E(O) as the expected value of the uncertainties of the
single orthopairs in the collection, formally:

EGO(O) =
∑
Oi∈O

PO(Oi) ∗ EO(Oi)
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We can also easily define another general measure for such a collection of
orthopairs.

Let us define, for all x ∈ U , the following quantity:

E(O, x) =
|{Oi ∈ O : x ∈ Bndi}|

|O|
Then we can define the uncertainty of O as:

E(O) =
1

|U |
∑
x∈U

E(O, x)

We can easily prove the following equivalence between these two measure:

Proposition 9. Let O be a collection of orthopairs, with |O| = n, and let
P be the uniform probability distribution over O (i.e. ∀Oi ∈ O P (Oi) = 1

n
).

Then EGO(O) = E(O).

Proof. EGO(O) =
∑

Oi∈O
1
n
EO(Oi) =

∑
Oi∈O

1
n

∑
x∈Bndi

1
|U | =∑

Oi∈O
1
n

∑
x∈U

1
|U |χBndi(x) =

∑
Oi∈O

∑
x∈U

1
n

1
|U |χBndi(x) =∑

x∈U
∑

Oi∈O
1
n

1
|U |χBndi(x) = 1

|U |
∑

x∈U
1
n

∑
Oi∈O χBndi(x) =

1
|U |
∑

x∈U
|{Oi∈O:x∈Bndi}|

n
= E(O)

In the rest of this section we will study specific uncertainty measures that
arise in specific contexts (e.g. Rough Sets, Possibility Theory, ...)

4.2 Rough Sets

Given an approximation space 〈U, π〉 we consider the collection of all
interior-exterior approximation pairs 〈l(X), e(X)〉 defined on the approxi-
mation space.

Given 〈U, π〉, and inspired by the work of Zhu and Wen in [55], we can
associate to each rough approximation R(X) = 〈l(X), e(X)〉 the probability

Pi(X) = ri(X)

2|U | where ri(X) = {Y ⊆ U |R(Y ) = R(X)}.
Based on the previous definition of global entropy we can define the un-

certainty of the approximation space as:

EO(〈U, π〉) =
m∑
i=1

Pi(R(A)) ∗ EO(R(A))
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where m is the number of approximation pairs introduced by the approx-
imation space.

Given the standard ordering on partitions (i.e. π1 ≤ π2 iff ∀C ∈ π1∃D ∈
π2 : C ⊆ D) we can prove the following desirable result:

Theorem 3. [6] EO is isotone wrt the standard ordering on partitions, i.e.
π ≤ σ → EO(π) ≤ EO(σ).

Proof. Consider the approximations (Si, S
′
i) induced by σ and let Si be the

associated families of subsets.
We can distinguish two cases:

1. (Si, S
′
i) belongs to the approximations induced by π (i.e. ∃(Pj, P ′j) =

(Si, S
′
i)) and, in this case, Si = Pj

2. ∃Pi1, ...,Pin. Si = ∪nj=1Pij, furthermore since the Pi1, ...,Pin are dis-
joint we have that |Si| =

∑n
j=1 |Pij|.

Furthermore it holds that E((Si, S
′
i)) ≥ maxj=1..n{(Pij, P ′ij)}.

Consider the global entropy of σ, EO(〈U, σ〉) =
∑m

i=1 PiEO((Si, S
′
i)),

if (Si, S
′
i) does not belong to the approximations induced by π then it

holds that term PiEO((Si, S
′
i)) can be rewritten as

∑n
j=1

|Pij |
2|X|

E((Si, S
′
i)) ≥∑n

j=1
|Pij |
2|X|

E((Pij, S
′
ij)); on the other hand, for the pairs (Si, S

′
i) induced by π

the term is
|Pj |
2|X|

E((Si, S
′
i)), hence the result.

The result of this theorem can be directly extended to the case of Covering
Rough Sets, considering order C1/C2, defined by Zhu et al. in [54] as

C1/C2 iff πappapp(C1) ≤ πappapp(C2)

where πappapp(C) is the partition on 2U induced by lower and upper approxi-

mation operators app e app [54].

Corollary 1. EO is isotone wrt the / ordering on coverings, i.e. π/σ →
EO(π) ≤ EO(σ)
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4.3 Possibility Theory

As noted in Section 2.6 we can associate to each orthopair O a corresponding
bpd πO and quantify the respective uncertainty, as noted by [24] and [21],
using the Hartley measure as:

H(πO) = log2(|πO|) = log2(2|BndO|) = |BndO|

and we can furthermore note that it is also possible to define EO(O), as
introduced in Section 3.1 based on this measure as:

EO(O) =
H(πO)

|U |
.
This same measure can be applied to any bpd π as:

H(π) = log2(|π|)

and since, as showed in Section 2.6, we can associate to each bpd π a corre-
sponding collection of orthopairs Oπ we can take this definition and apply it
to this collection of orthopairs as:

H(Oπ) = H(π) = log2(|π|)
However, as the next example shows, there may be different collections of
orthopairs corresponding to a bpd:

Example 1. Consider orthopairs O1 = ({x1}, {x3, x5}),
O2 = (∅, {x4, x5}) defined on universe X = {x1, ..., x5},
it holds that πO1 = {{1}, {1, 2}, {1, 4}, {1, 2, 4}} e
πO2 = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}},
therefore π{O1,O2} = πO1 ∪ πO2 =
{∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}, {1, 4}, {1, 2, 4}} (we
represented the functions ω as the respective sets, having ω as charac-
teristic function).

Consider orthopairs A = ({x1}, {x3, x5}), B = (∅, {x1, x4, x5}) e
C = ({x1, x3}, {x4, x5}). It holds that πA = {{1}, {1, 2}, {1, 4}, {1, 2, 4}},
πB = {∅, {2}, {3}, {2, 3}} and πC = {{1, 3}, {1, 2, 3}}, we can easily ver-
ify that π{A,B,C} = π{O1,O2}.
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However, as showed in [11], we can associate to each bpd π a unique
formula in disjunctive normal form where the disjuncts are mutually exclu-
sive; to each of these disjuncts we can therefore associate an orthopair thus
obtaining a unique canonical collection of orthopairs O∗π associate to π, we
call this collection the canonical representation of π.

This canonical representation allows us to directly compute the uncer-
tainty H(O∗π) as a combination of the uncertainties EO of the orthopairs in
the collection [6]:

H(O∗π) =
log(

∑
O∈O∗π

2EO(O)∗|X|)

|X|
On the other hand, given a bpd π and any corresponding collection of or-
thopairs Oπ the above stated relation only holds in a weaker form, defining
an upper bound to the value of H(O∗π) [6]:

H(O∗π) ≤
log(

∑
O∈O∗π

2EO(O)∗|X|)

|X|
since, in general, the bpds πOi , corresponding to the orthopairs in the collec-
tion, are not disjoint.

As an alternative approach to assign a measure of uncertainty to a collec-
tion of orthopairs, considered as a bpd, we can directly apply the definition
of global entropy EGO given in Section 4.1.

Let us first consider only collections O for which the bpds πOi , corre-
sponding to the orthopairs in the collection, are disjoint.

In this case we can assign to each orthopair Oi the probability P (Oi) =
|πOi |
|πO|

, thus obtaining the following expression of the global entropy [6]:

E(O) =
∑
Oi∈O

|πOi |
|πO|

EO(Oi)

We can prove the following appealing monotonicity property:

Theorem 4. Let π and σ two bpds s.t. π ≤ σ and let O∗π, O∗σ be the respective
canonical representations, then E(O∗π) ≤ E(O∗σ).

Proof. The result derives from the observation that given a set of or-
thopairs A = {O1π, ..., Onπ} ⊆ O∗π it always exists a corresponding set
B = {O1σ, ..., Omσ} ⊆ O∗σ s.t. πA ⊆ πB and

⋃
Bndiπ ⊆

⋃
Bndjσ.

31



In a more general situation, where the bpds are not necessarily disjoint, we
can assign to each orthopair Oi the probability P (Oi) = m(Oi)

|πO|
where, as

suggested by Bianucci and Cattaneo in [5], m(Oi) is defined as m(Oi) =∑
ω∈πO

χπOi
(ω)∑

Oj∈O
χπOj

(ω)
, therefore obtaining the following expression of the

global entropy [6]:

E(O) =
∑
Oi∈O

m(Oi)

|πO|
EO(Oi)

4.4 Conflict Measures

As already suggested for the single orthopair case, also in the more general
context of a collection of orthopairs it could be of interest the definition of a
measure to quantify the degree of conflict among a set of different orthopairs.

As a first basic approach we can define the conflict between two orthopairs
O1 and O2 as the, normalized, count of the elements on which the two or-
thopairs give an opposite assignment, that is:

C(O1, O2) =
|P1 ∩N2|+ |P2 ∩N1|

|U |
It is easy to verify that the definition of conflict between two orthopairs

satifies the two following important properties, which draw a correspondence
with the boundary-based measure EO:

• EO(OuI ) = |Bnd1∪Bnd2|
|U | +C(O1, O2) = EO(O1) +EO(O2) +C(O1, O2)−

|Bnd1∩Bnd2|
|U | ≤ EO(O1) + EO(O2) + C(O1, O2);

• EO(O�) = C(O1, O2) + |Bnd1∩Bnd2|
|U | .

This definition can be easily extended to a more generic collection of or-
thopairs O as follows:

C(O) =
|{x|∃Oi, Oj ∈ O.(x ∈ Pi ∧ x ∈ Nj) ∨ (x ∈ Pj ∧ x ∈ Ni)}|

|U |
.

We can also generalize the consensus operator � to a general collection
of orthopairs O as:
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�O =({x|∃Oi ∈ O.x ∈ Pi ∧ ∀Oj ∈ O.x /∈ Nj},
{x|∃Oi ∈ O.x ∈ Ni ∧ ∀Oj ∈ O.x /∈ Pj})

and we can prove the following result, that shows how the extended con-
flict measure still satisfies the above stated properties:

Proposition 10. Let O be a collection of orthopairs then:

• E(uIO) =
|
⋃
O∈O BndO|
|U | + C(O) ≤

∑
O∈O EO(O) + C(O);

• E(�O) = C(O) +
|
⋂
O∈O BndO|
|U | .

We can note that, though the conflict measure satisfies the above stated
appealing properties that put it in relation with boundary-based measure
EO, the measure does not distinguish cases for which, intuitively we would
expect a different level of conflict

Example 2. Let O1 = ({1}, ∅), O2({1, 3}, {2}), O3 = ({1, 2}, {4}) e
O4 = ({2}, {1}) be four orthopairs defined on U = {1, 2, 3, 4}. The
conflict on the collection O = {O1, O2, O3, O4} is C(O) = 2

4
.

On the other hand, consider orthopairs O′1 = ({1}, {2, 4}),
O′2({1, 3}, {2}), O′3 = ({2}, {1, 4}) e O′4 = ({2}, {1}). The conflict on
the collection O′ = {O′1, O′2, O′3, O′4} è C(O′) = C(O) = 2

4
.

As already said, we would intuitively expect the second collection to ex-
hibit a greater level of conflict, since, if we think of the orthopairs as rep-
resenting the opinions of a set of agents, the opinions in the first collection
are less unbalanced (i.e. the majority of the agents agree to the fact that
elements 1, 2 belong to P ).

It can thus be of interest the definition of another measure of conflict able
to distinguish these situations.

Given O = {O1, ..., On} be a collection of orthopairs defined on universe
U and x ∈ U a distinguished element of the universe, we can define the
conflict of O on x as:

CB(O, x) =
|{{Oi, Oj} : Oi 6= Oj|(x ∈ Pi ∧ x ∈ Nj) ∨ (x ∈ Pj ∧ x ∈ Ni)}|(

n
2

)
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that is, the (normalized) number of pairs that disagree about the assignment
of x.

We can thus define the conflict on O as:

CB(O) =

∑
x∈U CB(O, x)

|U |
It can be easily seen that the following proposition holds:

Proposition 11. Let O = {O1, O2}, then CB(O) = C(O), i.e. CB is a
proper generalization of the conflict measure on two orthopairs.

Proof. For a distinguished x ∈ U we have that:

CB(O, x) =

{
1 x ∈ (P1 ∩N2) ∪ (P2 ∩N1)

0 otherwise

hence the result.

Furthermore we can show that this measure is able to distinguish the
collections in Example 2:

Example 3. Consider the orthopairs in collection O, we have that

C(O, 1) = 3
4

and C(O, 2) = 2
4
, therefore C(O) =

3
4

+ 2
4

4
= 5

16
.

Consider, on the other hand, the orthopairs in collection O′, we have
that C(O′, 1) = 1 e C(O′, 2) = 1, therefore C(O′) = 2

4
> C(O) as we

argued precedently.

As a third possible measure of conflict we can define a measure inspired
by the measure of inner conflict, or balancedness, introduced in Section 3.3
for a single orthopair.

Given a distinguished x ∈ U and a collection of orthopairs O we can
define the positive part of O on x as:

P (O, x) = {O ∈ O|x ∈ PO}

and, similarly, we can define the negative part as:

N(O, x) = {O ∈ O|x ∈ NO}

.
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We can thus define the conflict of O on x as:

CR(O, x) =
m

M

where m = min{|P (O, x)|, |N(O, x)|} and M = max{|P (O, x)|, |N(O, x)|},
therefore we can define the conflict of O as:

CR(O) =
1

|U |
∑
x∈U

CR(O, x)

Also for this measure we can prove that it generalizes the conflict measure
on two orthopairs:

Proposition 12. Let O = {O1, O2}, then CR(O) = C(O), i.e. CR is a
proper generalization of the conflict measure on two orthopairs.

We can furthermore note that also CR distinguishes the collection of
orthopairs in Example 2

Example 4. Consider the collections of orthopairs O and O′, we have
that:

CR(1,O) = 1
3
;CR(2,O) = 1

2
;CR(3,O) = C(4,O) = 0

CR(1,O′) = CR(2,O′) = 1;CR(3,O′) = CR(4,O′) = 0
Therefore CR(O) = 5

24
< C(O′) = 1

2

Remark 3. It can be easily noted that both measures CB and CR does
not satisfy the correspondence property with EO which was shown to hold
for measure C.

4.5 Belief Pairs

Lawry in [27] distinguishes two particular classes of three-valued valuations:

• Kleene valuations, for which it holds that v(¬θ) = 1− v(θ), v(θ ∧ φ) =
min(v(θ), v(φ)), v(θ ∨ φ) = max(v(θ), v(φ)));
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• Supervaluations, that can be defined starting from a set Π of classical

valuations s.t. v(θ) =


1 min{v(θ)|v ∈ Π} = 1

0 max{v(θ)|v ∈ Π} = 0
1
2

otherwise

where θ is a propositional formula.
Given a universe U we can define a probability distribution w over the set

O(U) of all orthopairs defined on U , and define O = {O ∈ O(U)|w(O) > 0}.
Given an orthopair O we can associate with it both:

• A Kleene valuation vk, defined on each propositional letter p as vkO(p) =
1 if p ∈ P and vkO(p) = 0 if p ∈ N ;

• A supervaluation vsO,defined considering the set of classical valuations
of which πO is the characteristic function.

As showed in [27] we can, for both the valuations, define the following
measures:

• µ(θ) = w({(P,N)|vl(P,N)(θ) = 1};

• µ(θ) = w({(P,N)|vl(P,N)(θ) 6= 0}.

where l ∈ {k, s} and the pair 〈µ(θ), µ(θ)〉 is called a belief pair.
If we restrict the set of formulas to the formulas representable by an

orthopair (i.e. formulas θ for which ∃〈P,N〉, s.t. θ ≡
∧
x∈P x ∧

∧
x∈N ¬x),

Lawry in [27] showed that the above defined measures for Kleene valuations
and supervaluations are equivalent and can be represented in the following
form:

µ(Oθ) =
∑

Oj≥IOθ

w(Oj)

µ(Oθ) =
∑

OjtIOθ is defined

w(Oj)

that are, respectively, a measure of belief and a measure of plausibility in the
sense of Shafer [45].

We can also define a so-called measure of commonality as:
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q(Oθ) =
∑

Oj≤IOθ

w(Oj)

Given a probability measure w, the collection of orthopairs O determined
by w is defined as

O = {O ∈ O(U)|w(O) > 0}
and given such a collection O we can, as suggested by Klir and Folger in

[26], define, based on µ, a so-called dissonance measure:

D(O) = −
∑
Oi∈O

w(Oi)log2(µ(Oi))

As can be easily shown, given the definition of µ, D can be seen as a measure
of conflict, in fact the following properties holds:

Proposition 13. Let w a probability distribution over O(U), the following
holds:

• D is maximized, with value equal to
∑

Oi∈O w(Oi)log2(w(Oi)) =
EShannon(O), when ∀Oi, Oj ∈ O Oi, Oj are in conflict;

• D is minimized, with value equal to 0, iff ∀Oi, Oj ∈ O Oi, Oj are not
in conflict.

More in general we can study the eventual monotonicity of D wrt some
orderings.

Let O a collection of orthopairs and O ∈ O a distinguished orthopair, we
define Cons(O) as

Cons(O) = {Oi ∈ O|Oi is not in conflict with O}
.

Given two collections of orthopairs O1 = {O1
1, ..., O

1
n} and O2 =

{O2
1, ..., O

2
n} s.t. |Cons(O1

1)| ≤ ... ≤ |Cons(O1
n)| (respectively, |Cons(O2

1)| ≤
... ≤ |Cons(O2

n)|), we define the ordering ≤Cons as follows:

O1 ≤Cons O2 iff ∀i ∈ {1, ..., n}|Cons(O1
i )| ≤ |Cons(O2

i )|
.
Fixed two distributions w1, w2 s.t. ∀i ∈ {1, ..., n} w1(O1

i ) = w2(O2
i ) = 1

n
, we

can prove the following result:
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Theorem 5. Let O1,O2 be the collections of orthopairs defined by the prob-
ability distributions defined above.

Then O1 ≤Cons O2 implies that D(O1) ≥ D(O2).

Proof. Consider, for a generic i, the term w(Oi)log2(µ(Oi)): it holds that

µ(Oi) = |Cons(Oi)|
n

, thus, from the hypothesis, we have that ∀i log2(µ(O1
i )) ≥

log2(µ(O2
i )).

From this fact and the definition of ≤Cons we can directly derive the
result.

We can furthermore show the antitonicity of measure D w.r.t another
ordering, first defined by Dubois and Prade in [14].

Let w1, w2 be two probability distributions over O(U) and O1,O2 the
respective collections of orthopairs.

We define that 〈O1, w1〉 ≤ 〈O2, w2〉 iff the following hold:

• ∀O1
i ∈ O1∃O2

j ∈ O2 s.t. O2
j ≤I O1

i ;

• ∀O2
j ∈ O2∃O1

i ∈ O1 s.t. O2
j ≤I O1

i ;

• ∃w : O(U)×O(U)→ [0, 1] s.t.

– w(A,B) = 0 iff A /∈ O1 ∨B /∈ O2;

– ∀A ∈ O(U) w1(A) =
∑

B|B≤IAw(A,B);

– ∀B ∈ O(U) w2(B) =
∑

A|B≤IAw(A,B).

We can directly generalize the result proven by the authors in [14] to
obtain the following:

Theorem 6. Let 〈O1, w1〉 ≤ 〈O2, w2〉, then D(O1) ≥ D(O2).

Apart from measure D we can obtain other uncertainty measures starting
from µ and q.

Klir and Folger in [26] define the following measure of confusion:

C(O) = −
∑
Oi∈O

w(Oi)log2(µ(Oi))

for which we can prove the following properties [14]:

• C(O) is minimized, with value 0, iff |O| = 1;
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• C(O) is maximized, with value C(O) = −
∑

Oi∈O w(Oi)log2(w(Oi)) =
EShannon(O), when w is uniformly distributed over O and this forms a
maximal antichain w.r.t. ordering ≤I .

These same properties can also be proven for measure Q [14] defined,
based on q, as follows:

Q(O) = −
∑
Oi∈O

w(Oi)log2(q(Oi))

Furthermore, given a measure h of non-specificity (e.g. HIFS, HKlir) we can
define a generalized non-specificity measure as:

H(O) = −
∑
Oi∈O

w(Oi)h(Oi)

for which we can prove the following properties [14]:

• H is maximized, with value equal to log2(|U |), when:

– w(〈U, ∅〉) = 1, if h = HKlir;

– ∃O ∈ O s.t. PO ∪BndO = U and w(O) = 1, if h = HKlir.

• H is minimized, with value equal to 0, when ∀Oi ∈ O s.t. w(Oi) > 0
it holds that |Pi ∪Bndi| = 1.

Apart from these definitions based on [27] and the ordering ≤I we can
also give equivalent definitions for all the defined measures using ordering
≤t, as follows:

• µ(O)t =
∑

Oi≤tO w(Oi);

• µ(O)t =
∑

OiutO 6=(∅,X) w(Oi);

• q(O)t =
∑

Oi≥tO w(Oi).

and consequently define measures D,C and Q for which we can prove the
following properties:

• Dt is maximized when ∀O1, O2 ∈ O. O1 ut O2 = (∅, U) and ∀Oi ∈ O
w(Oi) = 1

|O| ;
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• Dt is minimized when ∃x ∈ U. ∀Oi ∈ O x ∈ Pi ∪Bndi;

• Ct is minimized when |O| = 1;

• Ct is maximized when w is uniformly distributed O and this forms a
maximal antichain w.r.t. ordering ≤t;

• As before, properties of Qt are equivalent to those of Ct.

We can extend the ordering ≤t to pairs 〈O, w〉 establishing that
〈O1, w1〉 ≤t 〈O2, w2〉 iff the following hold:

• ∀O1
i ∈ O1∃O2

j ∈ O2. O
2
j ≥t O1

i ;

• ∀O2
j ∈ O2∃O1

i ∈ O1. O
2
j ≥t O1

i ;

• ∃w : Orthopair(U) × Orthopair(U) → [0, 1] with w(A,B) = 0 if A /∈
O1 or B /∈ O2, s.t.

– ∀A ∈ Orthopair(U) m1(A) =
∑

B|B≥tAw(A,B);

– ∀B ∈ Orthopair(U) m2(A) =
∑

A|B≥tAw(A,B).

and thus extend the antitonicity result previously proven:

Theorem 7. Let 〈O1, w1〉 ≤t 〈O2, w2〉, then D(O1) ≥ D(O2).

Starting from any of µ, µ and q we can also generalize the following clas-
sical information-theoretic measures:

• Kullback − Leibler divergence, defined as

KL(O1||O2) =
∑
O∈O1

w1(O)log2(
µ1(O)

µ2(O)
)

;

• Cross− entropy, defined as

H(O1,O2) = −
∑
O∈O1

w1(O)log2(µ2(O)) = D(O1) +KL(O1||O2)

;
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• Jensen− Shannon divergence, defined as

JS(O1, ...,On) = D(OM)−
n∑
i=1

1

n
D(Oi)

.

where ∀i ∈ {1, ..., n} Oi is a collection of orthopairs determined by a
probability distribution wi and OM is the collection of orthopairs determined
by distribution wM =

∑n
i=1

wi
n

.
We can prove that the following upper bound, which holds for the classical

Jensen-Shannon divergence, also holds for the generalized definition:

Proposition 14. JS(O1, ...,On) ≤ log2(n).

Proof. For each Oi the maximum value, as shown previously, of D(Oi) is
log2(|Oi|).

Suppose that for each Oi, |Oi| = 1 and thus D(Oi) = 0. If, further-
more, the sets in the Oi are all disjoint the collection of orthopairs OM
contains n orthopairs each with probability 1

n
, thus D(OM) = log2(n) and

JS(O1, ...,On) ≤ log2(n).

On the other hand the following lower bound does not hold:

Proposition 15. There exist distributions w1, w2 over O(U) s.t.
JS(O1,O2) ≤ 0.

Proof. Consider the distributions w1, w2 s.t. w1(〈{1}, 〈2, 3〉}) =
1
3
, w1(〈{2}, 〈1, 3〉}) = 1

3
, w1(〈{3}, 〈1, 2〉}) = 1

3
and w2(〈{4}, 〈5, 6〉}) =

1
3
, w2(〈{5}, 〈4, 6〉}) = 1

3
, w2(〈{6}, 〈4, 5〉}) = 1

3
, where the underlying universe

is U = {1, 2, 3, 4, 5, 6}.
In this case we have that D(O1) = D(O2) = log2(3), on the other hand,

since wM assigns probability 1
6

to each of the six orthopairs, D(OM) = log2(6
4
)

thus JS(O1,O2) = −1 ≤ 0.

More in general, we have that JS(O1, ...,On) ≤ 0 when the conflict asso-
ciated with the mean distribution wM is less than the expected conflict over
the single distributions.

Defining that collections O1, ...,On are perfectly compatible if D(OM) =
0, we can also note the following:
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Proposition 16. When O1 = ... = On are perfectly compatible, it holds that
JS(O1, ...,On) = 0.

Proof. Since O1, ...,On are perfectly compatible we have that D(OM) = 0,
furthermore we also have that ∀i ∈ {1, ..., n}D(Oi) = 0, hence the result.

Thus we can observe the following facts about measure JS, that con-
firms that also for this generalized case it can be used as a distance measure
between distributions:

• When the aggregation of the collections is more consistent, in propor-
tion, than the single collections JS ≤ 0;

• When the collection are perfectly consistent, JS = 0;

• When the aggregation of the collections is more inconsistent, in pro-
portion, than the single collections JS ≥ 0.

4.6 Orthopartitions

Given an orthopair O = 〈P,N〉 we can associate with it a lower probability

p∗(O) = |P |
|U | and an upper probability p∗(O) = |P∪Bnd|

|U | .
We say that a set S is consistent with orthopair O if it holds that

x ∈ P → x ∈ S ∧ x ∈ N → x /∈ S

.
It is easy to observe that if we consider the collection of all sets S con-

sistent with an orthopair O we can define the following set of probabilities
P(O) = { |S||U | |S is consistent with O} which is obviously limited by p∗ and p∗.

We can notice that, given a generic orthopair O and its negated ¬O, they
are not disjoint in the classical sense unless O = 〈X,Xc〉 (i.e. O is a classical
set).

We can however note that if we consider O∨ = O ∨ ¬O = 〈P∨, N∨〉 and
O∧ = O ∧ ¬O = 〈P∧, N∧〉 it holds that P∨ ∪Bnd∨ = N∧ ∪Bnd∧ = U .

More in general, we can say that two orthopairs O1, O2 are disjoint if the
followings hold:

(Ax D1) N1 ∪N2 ∪ (Bnd1 ∩Bnd2) = U ;

(Ax D2) P1 ∩Bnd2 = Bnd1 ∩ P2 = ∅.
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Intuitively, two orthopairs are disjoint if they do not share elements ex-
cept, eventually, for those in the boundary which represent the elements for
which it is not known if they belong to one orthopair or the other.

We can prove the following result:

Proposition 17. Let O1, O2 be two disjoint orthopairs, then P1 ∩ P2 = ∅.
Proof. Let us suppose that P1 ∩ P2 6= ∅ and, in particular, suppose that
P1 ∩ P2 = {x} for a generic x ∈ U .

By definition P1 ∩N1 = P1 ∩Bnd1 = ∅, thus x /∈ N1 ∪Bnd1.
By the same line of reasoning we have that P2 ∩ N2 = P2 ∩ Bnd2 = ∅,

thus x /∈ N2 ∪Bnd2.
Thus x /∈ Bnd1 ∩ Bnd2 and x /∈ N1 ∪ N2 ∪ (Bnd1 ∩ Bnd2), but this is

absurd since O1, O2 are not disjoint.

Furthermore, we can prove that only axiom D1 is necessary:

Proposition 18. Axiom D1 implies Axiom D2.

Proof. Suppose, without loss of generality, that ∃x ∈ U s.t. x ∈ P1 ∩Bnd2.
By definition of orthopair we know that x /∈ N1, x /∈ N2, x /∈ Bnd1 thus

x /∈ N1 ∪N2 ∪ (Bnd1 ∩Bnd2), thus we reached an absurd.

Note also that the converse implication does not hold, but if, in addition,
it holds that P1 ∩ P2 = ∅ then we can obtain the implication.

Starting from the definition of disjointness of orthopairs, we can generalize
the concept of a partition to that of an orthopartition.

Formally, we say that a multiset O = {O1, ..., On} of orthopairs is an
orthopartition if the followings hold:

(Ax O1) ∀Oi, Oj ∈ O Oi, Oj are disjoint;

(Ax O2)
∨
iOi = 〈∪Pi, ∅〉;

(Ax O3) ∀x ∈ U (∃Oi s.t. x ∈ Bndi)→ (∃Oj with i 6= j s.t. x ∈ Bndj);

(Ax O4) |O| ≤ 2|
⋃
iBndi|

The rationale behind the axioms is that we suppose that the orthopairs
in the collection shold be mutually exclusive and, furthermore, the uncertain
elements could be only in one of these orthopairs (note, also, that these
axioms are similar to the informal definition, given by Lingras and Peters in
[31], of a rough clustering), the last axioms is needed to constrain the number
of orthopairs in the collection in order to avoid redundancies.
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Remark 4. While the axioms which define an orthopartition are similar
to the informal definition of Rough Clustering, they are different, from an
interpretation point of view, from the definition of C&E Re-Clustering
defined by Wang et al. in [49].

In fact:

• In C&E Re-Clustering the boundary of a cluster (or Fringe region),
represents the elements which are “weakly” included in the cluster,
that is, the elements which, based on the current knowledge (in
particular the number of clusters) can only be assigned to a given
cluster but whose inclusion would “destabilize” the cluster. Under
this interpretation of the boundary it is meaningful to include an
element x in only one boundary beacuse we have no uncertainty
about placing it in other clusters;

• On the other hand, in orthopartitions (and Rough Clustering, as
explained in Section 5.1) the boundary of a cluster represents the
elements over which we have some form of uncertainty about the
placement in the cluster. Since, furthermore, the axioms suggests
that only the given clusters are considered possible, an element x
should belong to only one of these clusters: if we have uncertainty
about its placement in a specific cluster then we should also be un-
certain about its placement in an another different cluster (other-
wise there would not be any uncertainty).

We illustrate the concept of an orthopartition with the following exam-
ples:

Example 5. Consider universe U = {1, 2, 3}.
The orthopairs O1 = ({1}, {3}) and O2 = ({3}, {1}) are disjoint,

furthermore the collection {O1, O2} is an orthopartition.

Example 6. Consider universe U = {1, 2, ..., 9, 10}.
The orthopairs O1 = ({1, 2}, {9, 10}) e O2 = ({9}, {1, 2}) are disjoint

but they do not form an orthopartition, because 10 ∈ Bnd2 but 10 /∈
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Bnd1.
On the other hand, if we also consider orthopair O3 = (∅, {1, 2, 9})

then the three orthopairs are disjoint and the collection {O1, O2, O3}
forms an orthopartition.

We say that a partition π is consistent with an orthopartition O iff ∀Oi ∈
O∃Si ∈ π s.t. S is consistent with Oi and the Sis are all disjoint, we call
ΠO = {π|π is consistent with O} the set of all partitions consistent with O.

We can give a definition of orthocovering, as a generalization of coverings,
by not considering Axiom O1 and weakening Axiom O4 as follows:

(Ax OC1)
∨
iOi = 〈∪Pi, ∅〉;

(Ax OC2) ∀x ∈ U (∃Oi s.t. x ∈ Bndi)→ (∃Oj with i 6= j s.t. x ∈ Bndj);

(Ax OC3) |O| ≤ 2|U |

4.6.1 Entropy on Orthopartitions

Given the definition of an orthopartition we can give a generalization of the
concept of logical entropy, given by Ellerman in [15] for classical partitions.
Let π be a partition, then its logical entropy is defined as:

h(π) =
dit(π)

|U |2

where dit(π) = {〈u, u′〉 ∈ U × U |u, u′ belong to two different blocks of π}.
We can associate with an orthopartition O two quantities:

• A lower entropy,
h∗ = min{h(π)|π ∈ ΠO}

• An upper entropy,

h∗ = max{h(π)|π ∈ ΠO}

We can furthermore define:

• The mean uncertainty of O, as

∧
h(O) =

h∗(O) + h∗(O)

2
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• The core of O, as

n(O) =
⋂
π∈ΠO

dit(π)

It can be easily seen that the following algorithm computes one of the
partitions π∗ (in the following lower partition) corresponding to the lower
entropy h∗(O):

Algorithm 1.

Input: Orthopartition O
BND := |

⋃
Oi∈O Bndi|

while BND > 0 do
Find O′ ∈ O with maximal |P ′ ∪Bnd′|
P ′ := P ′ ∪Bnd′
for i := 1 to n do
if Oi 6= O′ then
Bndj := Bndj \Bnd′
Nj := Nj ∪Bnd′

end if
end for
BND := BND − |Bnd′|
Bnd′ := ∅

end while
Output: The partition π∗

Similarly, the following algorithm computes one of the partitions π∗ (in
the following upper partition) corresponding to the upper entropy h∗(O):

Algorithm 2.

Input: Orthopartition O
BND := |

⋃
Oi∈O Bndi|

while BND > 0 do
Find O′ ∈ O with minimal |P ′|
P ′ := P ′ ∪ {x}, where x ∈ Bnd′
for i := 1 to n do
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if Oi 6= O′ then
Bndj := Bndj \ {x}
Nj := Nj ∪ {x}

end if
end for
Bnd′ := Bnd′ \ {x}
BND := BND − 1

end while

We can prove the following result:

Proposition 19. The following complexity bounds hold:

• Time complexity of Algorithm 1 is Ω(n) and O(|U | ∗ n ∗ log2(n));

• Time complexity of Algorithm 2 is Ω(n) and O(|U | ∗ n ∗ log2(n)).

Proof. The bounds can be easily obtained if we represent the orthopartition
O with an optimal implementation of priority queues, and we represent or-
thopairs with Union Find with Constant Delete data structures proposed by
Alstrup et al. in [1].

We illustrate the computations of entropies for an orthopartition in the
following example:

Example 7. Consider the orthopartition O = {O1, O2}, with O1 =
({1}, {3}) and O2 = ({3}, {1}), defined on universe U = {1, 2, 3, 4}.

The set ΠO of partitions consistent with O contains the following
partitions:

• π1 = {{1, 2, 4}, {3}} with entropy h = 6
16

;

• π2 = {{1}, {2, 3, 4}} with entropy h = 6
16

;

• π3 = {{1, 2}, {3, 4}} with entropy h = 8
16

= 1
2
;

• π4 = {{1, 4}, {2, 3}} with entropy h = 8
16

= 1
2
;

The lower entropy is thus equal to h∗ = 6
16

, while the upper entropy is
equal to h∗ = 1

2
.
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We can easily verify that we can obtain the first two partitions fol-
lowing Algorithm 1, likewise we can apply Algorithm 2 in order to obtain
the third and fourth partitions.

As noted by Ellerman in [15], the logical entropy h of a partition π can be
equivalently defined in terms of probability distributions (using the counting
measure) over the blocks:

h(π) = 1−
∑
B∈π

p2
B

In order to generalize this equivalence to orthopartitions, note that we can
associate to an orthopartition O the set

PO = {〈p1, ..., pn〉|pi ∈ P(O) ∧
n∑
i=1

pi = 1}

of probability distributions compatible with O, note that each probability
distribution corresponds to a unique partition π ∈ ΠO.

We can thus denote with P∗, P
∗ the probability distributions correspond-

ing, respectively, to the lower entropy and the upper entropy h∗, h
∗.

Furthermore, the set PO can be used to generalize the concept of Shannon
entropy to orthopartitions as follows: to each π ∈ ΠO we can associate a
probability distribution pπ ∈ PO and thus define the Shannon entropy of
partition π as

HS(π) = HS(pπ) =
n∑
i=1

pilog2(
1

pi
).

Note that the lower and upper partitions also define the limit distributions
P∗, P

∗ from which we can define the lower and upper Shannon entropies as
HS∗ = HS(P∗), H

∗
S = HS(P ∗); similarly we can define the mean Shannon

entropy as

∧
HS =

HS ∗+H∗S
2

.

Apart from the generalization of the logical entropy already introduced,
we can give another such generalization: first, given an orthopartition O
∀x, y ∈ U we define:
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dit(x, y) =
|{π ∈ ΠO : 〈x, y〉 ∈ dit(π)}|

|ΠO|
which represents the probability that x, y will be distinguished by the real
partition underlying orthopartition O.

Then we can give a different definition of the generalized logical entropy
as:

hP (O) =
∑
x,y∈U

dit(x, y)

|U |2

We illustrate the computation of hP with the following example:

Example 8. Consider the orthopartition introduced in Example 7.
The set ΠO of partitions consistent with O contains the following

partitions, with the respective entropies:

• π1 = {{1, 2, 4}, {3}} with h = 6
16

;

• π2 = {{1}, {2, 3, 4}} with h = 6
16

;

• π3 = {{1, 2}, {3, 4}} with h = 8
16

= 1
2
;

• π4 = {{1, 4}, {2, 3}} with h = 8
16

= 1
2
;

Therefore we have that: dit(1, 1) = 0, dit(1, 2) = dit(2, 1) = dit(1, 4) =
dit(4, 1) = dit(2, 4) = dit(4, 2) = dit(2, 3) = dit(3, 2) = dit(2, 4) =
dit(4, 2) = 1

2
, dit(1, 3) = dir(3, 1) = 1. Consequently h(O) = 7

16
.

We can observe that hP can be equivalently expressed as the average over
ΠO of the classical logical entropy h:

Proposition 20. Let O be an orthopartition , then hP (O) =
1
|ΠO|

∑
π∈ΠO

h(π).

Proof. hP (O) =
∑

x,y∈U
dit(x,y)
|U |2 = 1

|U |2
∑

x,y∈U
|{π∈ΠO:〈x,y〉∈dit(π)}|

|ΠO|
=

1
|U |2∗|ΠO|

∑
x,y∈U

∑
π∈ΠO

ditπ(x, y) = 1
|ΠO|

∑
π∈ΠO

∑
x,y∈U

ditπ(x,y)
|U |2 =

1
|ΠO|

∑
π∈ΠO

h(π); where ditπ(x, y) =

{
1 〈x, y〉 ∈ dit(π)

0 otherwise
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Furthermore we can also extend both definitions of logical entropy from
the case of partitions, and orthopartitions, to the case of coverings, and
orthocoverings.

We can extend the definition of logical entropy to coverings as follows:

h(C) =
|dit(C)|
|U |2

where dit(C) = {(x, y) ∈ U2|¬∃Ci ∈ C s.t. x ∈ Ci ∧ y ∈ Ci}.
The definition of logical entropy of an orthocovering C can thus be given

as the bounds h(C)∗, h(C)∗ over the set of compatible coverings, similarly
we can give an extended definition of hP to the case of orthocoverings by
considering the set of compatible coverings, instead of the set of compatible
partitions.

The upper covering, corresponding the upper entropy, can be obtained
applying Algorithm 2 as for partitions; on the other hand the lower covering,
corresponding to the lower entropy, can be computed with the following
simple algorithm:

Algorithm 3.

Input: Orthocovering C
for i := 1 to n do
Pi := Pi ∪Bndi

end for
Output: The lower covering c∗

4.6.2 Orderings on Orthopartitions

Given two orthopartitions O1,O2 we can generalize the refinement ordering
≤ [5] ,defined for partitions as π1 ≤ π2 iff ∀S ∈ π1∃T ∈ π2 s.t. S ⊆ T , as:

O1 ≤ O2 iff ∀Oi1 ∈ O1∃Oj2 ∈ O2 s.t. Oi1 ≤t Oj2

similarly we can generalize the ordering << [5] on partitions as:

O1 << O2 iff ∀Oj2 ∈ O2∃{O11, ..., Oh1} ⊆ O1 s.t. Oj2 =
h∨
k=1

Oik
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We can easily prove that, as for classical partitions, the two orderings are
equivalent:

Proposition 21. Let O1,O2 be two orthopartitions, then O1 ≤ O2 iff O1 <<
O2.

Proof. That << implies ≤ is obvious.
For the other side, consider that O1 ≤ O2 and consider two orthopairs

O11 ∈ O1, T ∈ O2 s.t. T ≥ O11.
It is evident that O1 must contain {O21, ..., Oh1} s.t T ≤

∨h
k=1Ok1, oth-

erwise O1 would not be an orthopartition.
Furterhmore the inequality holds with equality, otherwise there would

exist O∗ ∈ {O11, ..., Oh1} s.t. @S ∈ O2 with O∗ ≤ S, but in this case it
would not hold our hypothesis that O1 ≤ O2.

Hence the result.

From this result we can prove that the introduced entropies are antitonic
w.r.t. the refinement ordering

Theorem 8. h∗, h
∗ (resp. HS∗, H∗S) are antitonic w.r.t. ordering ≤ on

orthopartitions.

Proof (Sketch) . Let O1,O2 be two orthopartitions s.t. O1 ≤ O2.
Then the elements of U are more distributed among the orthopairs in O1

than among those in O2, thus generating consistent partitions closer to the
discrete partition (i.e. the partition πdiscr = {{x}|∀x ∈ U})

The following result directly derives from the fact tha hP is the average
of classical logical entropy over ΠO:

Corollary 2. hP is antitonic w.r.t. the ≤ ordering on orthopartitions.

4.6.3 Mutual Information

Given two orthopartitions O1,O2 we can define a new meet orthopartition
as:

O1 ∧ O2 = {Oi1 ut Oj2|Oi1 ∈ O1 ∧Oj2 ∈ O2}

to which we can associate the following set of consistent partitions:
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ΠO1∧O2 = {π ∧ σ|π is consistent with O1 ∧ σ is consistent with O2}

.
From these definitions we can easily define ∀π ∈ ΠO1 ∀σ ∈ ΠO2 h(π ∧ σ)

(resp. Hs(π ∧ σ)) as the meet logical entropy, from which we can define
h∗(O1 ∧ O2) and h∗(O1 ∧ O2), respectively, as the lower and upper bounds
of the meet entropies over the set of consistent meet partitions.

As proven by Ellerman in [15], for each π, σ partitions it holds that h(π∧
σ) ≤ h(π) + h(σ), thus, when we consider two orthopartitions O1,O2, this
relation holds w.r.t. all possible pairs of consistent partitions.

Note, on the other hand, that in general there is no relation between
O1∗∧O2∗ and (O1∧O2)∗ (similarly, for the upper partitions); we can however

prove the following bounds on the value of
∧
h(O1 ∧ O2):

Theorem 9. Let O1,O2 be two orthopartitions, then

max{
∧
h(O1),

∧
h(O2)} ≤

∧
h(O1 ∧ O2) ≤

∧
h(O1) +

∧
h(O2).

Proof. The lower bound is obvious from the fact that the logical entropy h
is antitonic w.r.t. the refinement ordering ≤ on orthopartitions.

As for the other bound, note that since (O1 ∧ O2)∗ is determined by
partitions π, σ, which are respectively consistent with O1,O2, it holds that
h(O∗1) ≥ h(π) (resp. h(O∗2) ≥ h(σ)).

Consequently we have that h((O1∧O2)∗) ≤ h(O∗1)+h(O∗2), that is h(O1∧
O2))∗ ≤ h(O1)∗ + h(O2)∗.

Furthermore, by definition, it holds that h((O1∧O2)∗) ≤ h(O1∗∧O2∗) ≤
h(O1∗) + h(O2∗), that is h(O1 ∧ O2))∗ ≤ h(O1)∗ + h(O2)∗.

From these relations we can derive that
∧
h(O1 ∧ O2) ≤

∧
h(O1) +

∧
h(O2),

hence the result.

As shown by Ellerman, given two partitions π, σ we can define their logical
and information-theoretic mutual information, respectively, as:

m(π, σ) = h(π) + h(σ)− h(π ∧ σ)

I(π, σ) = HS(π) +HS(σ)−HS(π ∧ σ).
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Remark 5. Note that I(π, σ) is equivalent to the standard information-
theoretic definition of mutual information.

Using these definitions we can assign a value of mutual information to
each partition consistent with the respective orthopartition. Furthermore
we can give an estimated measure of the mutual information between two
orthopartitions O1,O2 based on the mean uncertainties:

m(O1,O2) =
∧
h(O1) +

∧
h(O2)−

∧
h(O1 ∧ O2)

I(O1,O2) =
∧
HS(O1) +

∧
HS(O2)−

∧
HS(O1 ∧ O2).

We can easily prove the following bounds on the value of the logical
mutual information:

Proposition 22. 0 ≤ m(O1,O2) ≤ min{
∧
h(O1),

∧
h(O2)}.

Proof. The result is obtained by simple rearrangement of the terms in the
bounds proven in Theorem 9.

An aternative definition of mutual information, inspired by the one given
by Ellerman in [15] and defined, on partitions, as:

M(π, σ) = dit(π) ∩ dit(σ)

can be given in terms of the cores of the orthopartitions as:

M(O1,O2) = n(O1) ∩ n(O2)

which intuitively, when normalized over |U |2, gives a measure of the pairs of
elements of the universe which are always distinguished by both orthoparti-
tions.
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5 Applications

In this section we will introduce some suggested applications of the ideas
presented in this document, in particular:

• In Section 5.1 we will introduce Rough Clustering and show applica-
tions of the concept of an orthopartition and mutual information as
clustering evaluation criteria and also as a criteria to guide the cluster-
ing process. Furthermore we will show some case studies on which we
tested the described ideas;

• In Section 5.2 we will introduce two possible applications of orthoparti-
tions and mutual information to Decision Tree Learning, in particular
we will show how orthopartitions can be used to implement Three-
Way Decision Tree Learning, and also how they can be used to realize
semi-supervised learning in the context of Decision Tree Learning;

• In Section 5.3 we will show applications of the measures described in
Sections 4.3 and 4.4 to Version Space Learning and Active Learning;

• In Section 5.4 we will show a generalization of the framework for mul-
tiagent consensus propsed by Lawry and Crosscome in [12].

5.1 Rough Clustering

In [31] Lingras and Peters introduced the idea of Rough Clustering, incor-
porating some of the principles of Rough Set Theory in classical clustering:
essentially, each cluster is approximated by a lower cluster (defined by the
elements that “certainly” belong to the cluster) and an upper cluster (defined
by the elements that “possibly” belong to the cluster).

The definition of rough clustering is given by the following three informal
properties:

• ∀x ∈ U , there exists at most one lower approximation containing x;

• ∀x ∈ U , if x belongs to a lower approximation it belongs also to the
corresponding upper approximation;

• ∀x ∈ U , if x does not belong to any lower approximation, then, it
belongs to at least two upper approximations.
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It is easy to observe that these properties correspond to the Axioms that
define the concept of an orthopartition.

In the same work, the two authors, also propose a generalization of clas-
sic clustering algorithm K-Means [17] thus introducing the Rough KMeans
algorithm.

Since a rough clustering algorithm can be applied to obtain an orthopar-
tition from a dataset, it is possible to apply the uncertainty measures intro-
duced in Section 4.6 in this context.

A first such application is the definition of Clustering Evaluation criteria,
that is the definition of measure of quality of a given clusterization (for an
introduction to Clustering Evaluation, see [34]): in particular, an external
criterion is a measure that allows to compare a clustering to a given gold
standard.

One of the most widely used external criteria is the Normalized Mutual
Information, defined for a clustering Ω and a gold standard C as:

NMIS(Ω, C) =
I(Ω, C)

HS(Ω)+HS(C)
2

NMI(Ω, C) =
m(Ω, C)

min{h(Ω), h(C)}
Note that, when the clustering or the gold standard is an orthoparti-

tion (thus representing an uncertainty about the class assignments of the
instances) it is not possible to directly apply these definitions. We can, how-
ever, define a generalization of these two criteria by applying the definition
of mutual information as applied to orthopartitions.

We illustrate this process of using mutual information for clustering eval-
uation in the following example:

Example 9. Consider the gold standard classification C1 = {3, 8, 9},
C2 = {1, 2}, C3 = {6, 7} e C4 = {4, 5, 10}.

Consider orthopartion O, given by orthopairs O1 = ({1, 2}, {9, 10}) e
O2 = ({9}, {1, 2}) e O3 = (∅, {1, 2, 9}).

Consider, on the other hand, orthopartition Q, given by or-
thopairs Q1 = ({3}, {1, 7, 5, 10}), Q2 = ({5, 10}, {1, 3, 7}), Q3 =
({7}, {1, 2, 3, 5, 10}) e Q4 = ({1}, {3, 5, 7, 8, 10}). Intuitively Q is more
similar to the gold standard C, thus we would expect it to have a greater
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NMI value. It holds that:

• h(C) = 78
100

;

• h(O)∗ = 32
100

, h(O)∗ = 66
100

,
∧
h(O) = 49

100
;

• h(Q)∗ = 48
100

, h(Q)∗ = 74
100

,
∧
h(Q) = 61

100
;

• h(O ∧ C)∗ = 74
100

, h(O ∧ C)∗ = 88
100

,
∧
h(O ∧ C) = 81

100
;

• h(Q∧ C)∗ = 74
100

, h(Q∧ C)∗ = 88
100

,
∧
h(Q∧ C) = 81

100
;

Therefore NMI(O, C) =
78+49−81

100
49
100

' 0.94 and NMI(Q, C) =
78+61−81

100
61
100

'
0.95, thus NMI(Q, C) ≥ NMI(O, C) as we argumented.

Another application of the measures of uncertainty introduced in 4.6 to
Rough Clustering is to define measures of quality to direct the process of
clustering.

Chen and Wang in [8] and, subsequently, Duan, Yang and Li in [13] de-
fined two Rough Clustering algorithms which employ the mutual information
(or the entropy) to assign a weight to the attributes of the dataset, thus giving
more relevance to attributes that give greater mutual information values.

Both the algorithms are based on the following schema:

Input: Dataset D
Preprocessing (missing value replacement, ...) of D ⊆ An

loop
Compute a rough clustering on the basis of a similarity measure
sim(xi, xj)
Compute the quality of the clustering, if it reach a predetermined thresh-
old stop
Weigh the attributes on the basis of the mutual information m and
redefine sim accordingly

end loop
Output: Rough clustering of D

Note that to compute the weight of an attribute, it is required to com-
pare the orthopartition generated by the clustering algorithm with similarity
classes generated by the attribute.
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In general these are guaranteed to be orthopartitions only in the case the
attribute is discrete, otherwise the attribute would generate an orthocovering.

5.1.1 Case Studies

In order to test the applications proposed in Section 5.1 we tested three dif-
ferent rough clustering algorithms on a variety of datasets, trying to ascertain
the ability of these algorithms to reproduce the given classifications.

The three algorithms we tested are:

• Rough KMeans, as proposed in [31] (see Algorithm 4);

• Rough KMedians, a rough set based variant of the KMedians algorithm
(see [22]) (see Algorithm 5);

• A variant of the algorithm proposed in [8], in the following called Rough
Refinement (see Algorithm 6)

A simple description of these algorithms is given by the following pseu-
docodes:

Algorithm 4.

Input: Dataset D, number of clusters k, upper weight wu, lower weight
wl, threshold ε
Randomly generate initial cluster centroids
while Algorithm converges do

For each instance x in D, compute the distance between x and each
of the clusters Ci
Assign each instance x to the cluster C∗ with the minimum distance
d∗, if d∗ ≤ 1− ε then x ∈ P ∗, otherwise x ∈ Bnd∗
For each cluster Ci recompute its centroid, weighting the elements
in Pi with wu and those in Bndi with wl

end while

Algorithm 5.

Input: Dataset D, number of clusters k, upper weight wu, lower weight
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wl, threshold ε
Randomly generate initial cluster medians
while Algorithm converges do

For each instance x in D, compute the distance between x and each
of the clusters Ci medians
Assign each instance x to the cluster C∗ with the minimum distance
d∗, if d∗ ≤ 1− ε then x ∈ P ∗, otherwise x ∈ Bnd∗
For each cluster Ci recompute its (weighted) median, weighting the
elements in Pi with wu and those in Bndi with wl

end while

Algorithm 6.

Input: Dataset D, threshold ε
while Algorithm converges do

For each instance x create the cluster Cx
For each pair of instances x, y in D compute the similarity sim(x,
y), if sim(x, y) > ε then add y to Cx
For each pair of clusters Cx, Cy if their degree of overlap is greater
than ε then merge the clusters
For each pair of clusters Cx, Cy put the overlapping elements in the
respective boundaries

end while

We implemented the algorithms using the Java programming language
and the WEKA library [20] and tested them against the following datasets
available in the UCI repository [30]:

• Iris [2] [16] (https://archive.ics.uci.edu/ml/datasets/iris);

• Wine [18] (https://archive.ics.uci.edu/ml/datasets/wine);

• Zoo (http://archive.ics.uci.edu/ml/datasets/zoo);

• Yeast [36] [37](https://archive.ics.uci.edu/ml/datasets/Yeast).

For each of these datasets we considered the given classification as a gold
standard clustering that we compared to the clustering produced by the
previously mentioned algorithms.
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In order to establish the effectiveness of the algorithms we tested them
against standard clustering algorithm KMeans with Kmeans++ [3] initial-
ization method.

For each algorithm, and each dataset, we measured two different quanti-
ties:

• Normalized Mutual Information, as previously defined;

• Purity, defined as follows: given a rough clustering O = {O1, ..., On}
and a gold standard C = {C1, ..., Cm} we define

P (Oi, Cj) = |Pi ∩ Pj|+
∑

x∈Bndi∩Pj

1

|{Ok ∈ O|x ∈ Bndk}|
+

∑
x∈Bndj∩Pi

1

|{Ck ∈ C|x ∈ Bndk}|
+

∑
x∈Bndj∩Bndi

[
1

|{Ck ∈ C|x ∈ Bndk}|
∗ 1

|{Ok ∈ O|x ∈ Bndk}|
]

then, we have:

purity(Ω, C) =
1

N

∑
Oi

maxCjP (Oi, Cj)

.

Remark 6. Intuitively P (Oi, Cj) measures the degree of similarity be-
tween one of the clusters Oi ∈ Ω and one of the classes Cj ∈ C (weighting
the elements in the boundaries differently).

Thus, the purity measures the rate of error expected if we associate
to each cluster the classification label which was “more common” within
the cluster itself.

For each of the datasets we followed the following basic procedure:

1. Import the dataset (in arff format);
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2. Store the classification attribute as a gold standard and remove it from
the dataset;

3. Measure NMI and purity 10 times, changing the initialization seed;

4. Compute the average of recorded values of the measures.

We obtained the following results:

NMI Iris Wine Zoo Yeast
KMeans 0.69 0.66 0.66 0.50

Rough KMeans 0.92 0.77 0.89 0.75
Rough KMedians 0.92 0.77 0.87 0.79
Rough Refinement 0.49 0.43 0.60 NA

Table 1: Table reporting the NMI values for the UCI datasets

Purity Iris Wine Zoo Yeast
KMeans 0.69 0.63 0.63 0.37

Rough KMeans 0.91 0.69 0.81 0.42
Rough KMedians 0.92 0.69 0.78 0.47
Rough Refinement 0.82 0.97 0.97 NA

Table 2: Table reporting the purity values for the UCI datasets

We can make the following observations:

• Rough Refinement registered, for each dataset, the lowest measured
value for NMI but the highest measured value for purity ; this is be-
cause, for each of the dataset, the algorithm produced more clusters
than those predicted by the gold standard classification thus favoring
smaller clusters which produce a high value of purity (as for the classical
case);

• Rough KMeans and Rough KMedians produced comparable results,
both better than KMeans on both the measures;

• As seen by manual inspection of the results obtained, a high value of
both NMI and purity was correlated with a good correspondence with
the given gold standard classification;
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• We did not record the value of the measures for the Rough Refinement
algorithm on the Yeast dataset because of the large dimensionality of
the dataset.

We also tested, in collaboration with Professor Federico Cabitza, Gior-
gio Maffezzoli and Matteo Modonato, the same algorithms on a dataset of
kyphosis-affected patients.

The dataset is made of 120 instances, a pair of 15 measurement attributes
collected by two different measurers (in the following denoted as x1 and x2), 5
anagraphical attributes and 2 classification attributes, given by two different
raters (in the following denoted as y1 and y2).

Starting from this dataset we produced 4 dataset, one for each combina-
tion of measurer and rater thus obtaining the following:

• Dataset x1y1;

• Dataset x2y1;

• Dataset x1y2;

• Dataset x2y2.

For each of these datasets we then applied the following procedure:

1. Removal of the irrelevant features (we eliminated two features, namely
the Type of X-Ray and the Day of Surgery, because, evidently, every
correlation of these features with the classification would be spurious);

2. Normalization and Standardization of the numeric attributes (using the
Standard Score x−µ

σ
; where x is a value for an attribute, µ is the mean

for that attribute and σ is the standard deviation of that attribute);

3. Imputation of the missing values using K-Nearest Neighbors algorithm.

We then tested the previously described algorithms on each of the
datasets, obtaining the following results:

NMI x1 y1 x2 y1 x1 y2 x2 y2

KMeans 0.54 0.54 0.51 0.46
Rough KMeans 0.79 0.83 0.82 0.81

Rough KMedians 0.74 0.79 0.76 0.82
Rough Refinement 0.63 0.62 0.60 0.65

Table 3: Table reporting the NMI values for the kyphosis dataset
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Purity x1 y1 x2 y1 x1 y2 x2 y2

KMeans 0.32 0.31 0.33 0.35
Rough KMeans 0.37 0.41 0.39 0.36

Rough KMedians 0.35 0.39 0.38 0.40
Rough Refinement 0.30 0.29 0.34 0.35

Table 4: Table reporting the purity values for the kyphosis dataset

We can observe the following facts:

• The obtained clusterings reported a high value of NMI but a low value
of purity : a manual inspection of the produced results showed a high
discrepancy between the reconstructed clusterings and the given clas-
sifications;

• As a consequence of the previous fact we can observe that no one of
the two evaluation criteria is completely meaningful when taken in
isolation, this amounts to the following reasons:

– purity is not sufficiently informative because a large number of
cluster determines a high value of purity;

– On the other hand NMI is not sufficiently informative because
very different clusterings could produce similar values of NMI,
this is caused by the fact that this measure does not take in con-
sideration (for computational efficiency reasons) all the partitions
compatible with the given orthopartitions.

• On the other hand, as already observed for the UCI dataset, the com-
bination of the two measures is a good measure of the performance
of a given clustering algorithm, since their computation is based on
different assumptions.

• As a final observation, the algorithm Rough Refinement produced, for
each dataset, a number of clusters between 5 and 6, thus favoring a
merging of some of the classes.

5.2 Decision Tree Learning

In this section we are going to introduce two applications of orthopartitions
and mutual information to Decision Tree Learning.
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Decision Tree Learning is a popular approach in Machine Learning, in
which the learned model is represented as a Decision Tree.

Let D = {x1, ..., xd} ⊆ U be a dataset over feature set A = {a1, ..., al}.
The classical algorithms for Decision Tree induction (ID3 [42], C4.5 [43])

are based on the following top-down greedy algorithm:

Algorithm 7.

Input: Dataset D
For each feature a compute the mutual information Ia w.r.t. D;
Select feature amax with maximum mutual information value and create
a decision node onamax ( split attribute);
Recur on the subsets of D determined by the values of amax;

Output: Decision Tree built on D

We can extend Decision Tree Learning to the case of orthopartitions in
two different ways:

• In the first generalization, orthopartitions are used to allow induction of
Three-way Decision Trees (based on Three-way Decisions, outlined by
Yao in [50], and similar in spirit to Three-way Decision Trees proposed
by Liu et al. in [32]);

• In the second generalization, orthopartitions are used to allow a form
of semi-supervised learning in the context of Decision Tree Learning.

5.2.1 Three-way Decision Tree Learning

As regards the first approach, let D = {x1, ..., x|D|} ⊆ X be a given dataset
with a set of features {a1, ..., am} and a single classification feature C.

We will first consider, for simplicity, that only two classifications are
possible, that is ∀x ∈ D. C(x) ∈ {P,N}, furthermore we will suppose that
any learned model h can classify the instances in three possible ways, that
is ∀x ∈ X. h(x) ∈ {P,N,Bnd}, where the Bnd decision corresponds to a
decision of abstaining from judgement.

Let us define two costs ε, α ∈ R+, which represent, respectively, the cost
associated with a classification error and the cost corresponding to an ab-
stention and let us suppose that α < ε (otherwise abstaining would not be a
meaningful decision).
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Each feature a, with possible values va1 , ..., vak , of dataset D (and, thus,
each decision node in a corresponding inducted Decision Tree) naturally de-
termines an orthopartition on the basis of ε and α.

Let Da
i = {x ∈ D|va(x) = vai } be the sets of instances that has value vai

for feature a.
If we associate to Da

i the classification

Ca
i = argmaxj∈{P,N}{|{x ∈ Da

i |C(x) = j}|}
we can compute the expected classification error cost as:

E(Da
i |Ca

i ) = ε ∗minj∈{P,N}{|{x ∈ Da
i |C(x) = j}|}

Similarly we can compute the expected abstention error cost as:

E(Da
i |Bnd) = α|Da

i |
Thus, if E(Da

i |Ca
i ) ≤ E(Da

i |Bnd) the cost associated with a classification
error is less than the cost that we would incur if we were to abstain and we
assign to the instances in Da

i the label Ca
i (that is, h(x) = Ca

i ); otherwise we
assign to the instances in Da

i the label Bnd.
It is evident that this process of assigning labels determine an orthopair

Oa = (Pa, Na) and, thus, an orthopartition Oa = {Oa,¬Oa}, where:

Pa =
⋃
{Da

i |Ca
i = P}

and similarly for Na.
We can thus, for each feature a, compute the mutual information m be-

tweenOa and the currently examined dataset D and choose the split attribute
as the feature a which gives the greatest value of mutual information.

This process can be synthethically described by the following algorithm:

Algorithm 8.

Input: Dataset D, error cost ε, abstention cost α
For each feature a compute the corresponding orthopartition Oa using
ε, α
For each orthopartition Oa compute the mutual information m(D,Oa)
Select as split attribute the feature amax which gives the greatest mutual
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information value
Recur on the subsets of D determined by amax

Output: Three-way Decision Tree built on D

The algorithm is illlustrated by the following example:

Example 10. Consider the following dataset D:

Temperature Outlook Humidity Windy Do Sport?
hot sunny high false no
hot sunny high true no
hot sunny high false yes
cool rain normal false yes
cool overcast normal true yes
mild sunny high false no
cool sunny normal false yes
mild rain normal false yes
mild sunny normal true yes
mild overcast high true yes
hot overcast normal false yes
mild rain high true no
cool rain normal true no
mild rain normal false yes

Let us suppose that ε = 1 and α = 0.4, thus

Temperature no yes HShannon error cost abstention cost
hot 2 2 1 2 1.6
mild 2 4 0.92 2 2.4
cool 1 3 0.81 1 1.6

Outlook no yes HShannon error cost abstention cost
sunny 3 3 1 3 2.4

overcast 0 3 0 0 2.4
rain 2 3 0.97 2 2
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Humidity no yes HShannon error cost abstention cost
high 4 3 0.98 3 2.8

normal 1 6 0.59 1 2.8

Windy no yes HShannon error cost abstention cost
false 2 6 0.81 2 3.2

normal 3 3 1 3 2.4

Comparing the Three-Way Decision Tree Learning algorithm we pro-
posed with the ID3 algorithm (thus using Information Gain (IG) as split
criterion) we obtain the following values:

Feature NMI IG
Temperature 14

196
0.03

Outlook 24
196

0.165
Humidity 25

196
0.155

Windy 24
196

0.05

Thus, our algorithm will select Humidity as the split attribute, while
ID3 would select Outlook.

It can easily be seen that, if we were to stop at this tree depth, the
tree returned by ID3 would incur in a total error cost of 5 (3 misclassi-
fied instances with Outlook = sunny and 2 misclassified instances with
Outlook = rain), while our algorithm would incur in a total error cost
of 3.8 (1 misclassified instance with Humidity = high and 7 unclassified
instances with Humidity = normal).

Therefore, our algorithm produced a better result than the one pro-
duced by ID3.

This approach can be extended to consider more than two classes, let
C = {C1, ..., Cn} be the set of the possible classifications.

In order to extend this approach we have to consider multiple possible
abstention decisions, with Bndi,i+1,...,i+k, with {i, i+ 1, ..., i+ k} ⊆ {1, ..., n},
we denote the decision of establishing that a certain instance x belongs to
one of the classes Ci, Ci+1, ..., Ci+k but we abstain to precisely decide which
one.
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By extending decisions in this way the abstention cost can no longer be
a constant value α

Proposition 23. If the abstention cost α is a constant, then choosing deci-
sion Bndi,i+1,...,i+k is always costlier than choosing decision Bnd1,...,n.

Proof. ε ∗ |{x ∈ Da
i |C(x) /∈ {i, i+ 1, ..., i+ k}}| +

α ∗ |{x ∈ Da
i |C(x) ∈ {i, i+ 1, ..., i+ k}}| ≥ α ∗ |Da

i |.

The solution is to define α as a function α : {1, ..., |A|} → R+ such that,
given A,B ⊆ C, it holds |A| ≤ |B| → α(|A|) ≤ α(|B|).

Remark 7. Note that, since in general every subset of classes should be
considered, the complexity of choosing the split attribute is exponential
in the number of features |A|, thus, without using heuristics to limit the
search space, this approach is applicable only if A is small.

5.2.2 Semi-supervised Decision Tree Learning

As regards the second approach, let D be a dataset, the classification, in this
case, could be missing for some of the instances, that is ∀x ∈ D. C(x) ∈
{P,N,⊥} where ⊥ represents a missing classification.

In this case the dataset directly represents an orthopartition and we can
naturally generalize the classical induction algorithms by considering the
mutual information as defined for orthopartition.

For each feature a, with values va1 , ..., vak , let us denote with Da
i the

(sub)-orthopartition containing the instances x ∈ D such that va(x) = vai .
We can associate to each of these orthopartitions Da

i the entropy:

∧
h(Da

i )

and then compute the mutual information as:

m(D, a) =
∧
h(D)−

∑
vai

|{x : va(x) = vai }|
|D|

∧
h(Da

i )

Thus the process can be described by the following algorithm:
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Algorithm 9.

Input: Dataset D
For each feature a compute the mutual information m(a,D)
Select as split attribute the feature amax which gives the highest mutual
information value
Recur on the (sub)-orthopartitions of D determined by the values of a

Output: Decision Tree built on D

We illustrate the algorithm with the following example:

Example 11. Consider the following dataset D:

Temperature Outlook Humidity Windy Do Sport?
hot sunny high false no
hot sunny high true no
hot sunny high false yes
cool rain normal false ⊥
cool overcast normal true yes
mild sunny high false no
cool sunny normal false ⊥
mild rain normal false yes
mild sunny normal true yes
mild overcast high true ⊥
hot overcast normal false yes
mild rain high true ⊥
cool rain normal true no
mild rain normal false yes

The dataset has a value of h∗ = 20
49

, h∗ = 1
2
,
∧
h = 89

196
. We obtain the

following values of mutual information:
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Temperature h∗ h∗
∧
h

hot 1
2

1
2

1
2

mild 5
18

1
2

7
18

cool 3
8

1
2

7
16

Outlook h∗ h∗
∧
h

sunny 4
9

1
2

17
36

overcast 0 4
9

2
9

rain 8
25

12
25

10
25

Humidity h∗ h∗
∧
h

high 5
18

1
2

7
18

normal 7
32

15
32

11
16

Windy h∗ h∗
∧
h

false 3
8

1
2

7
16

normal 4
9

1
2

17
36

Obtaining the following values of mutual information:

Feature Mutual Information
Temperature 0.024

Outlook 0.064
Humidity −0.066

Windy 0.004

Thus, the algorithm would select feature Outlook as split attribute.

The decision given on the leaf nodes can be given with a majority cri-
terion, or by combining this approach with the Three-way Decision Tree
approach previously described.

Also this approach can be easily extended to the case of multiple classes.
In this case, if the set of possible classification is C = {C1, ..., Cn} then

each instance is assigned a label in 2C , where if |C(x)| > 1 it means that the
exact classification of instance x is unknown.

This approach represent a direct generalization of the one considering
only two classes because , in the same way, it determines an orthopartition
and we can apply the algorithm described above.

5.3 Version Space Learning

The idea of Concept Learning, and Version Space Learning in particular, has
been introduced by Mitchell in [35] as a theoretical framework in classification
and machine learning.

Let X be a set of instances, a concept C is a subset C ⊆ X.
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Given a dataset D = {〈xi, C(xi)〉|xi ∈ X} and an Hypothesis Space H,
the goal of Concept Learning is to learn a function h : X → {0, 1} ∈ H,
called hypothesis or classifier, able to approximate as much as possible the
target concept C.

Given a a dataset D and an hypothesis h we say that h is consistent if
∀xi ∈ D. C(xi) = h(xi).

The Version Space is defined as follows:

V SD,H = {h ∈ H|h is consistent with D}
.

If the set of hypotheses H is at least partially ordered it is possible to
represent the Version Space in a compact form.

The standard ordering on hypotheses is the specificity ordering: given
two hypotheses h1 and h2, we say that h1 is more specific than h2 (resp. h2

is more general than h1) iff ∀x ∈ X. h1(x) = 1→ h2(x) = 1.

Remark 8. It can be easily noted that the specificity ordering corresponds
to the truth ordering ≤t, defined in Section 2.2, on orthopairs.

We can see an orthopair O as a partial classifier, that is, a classifier that
is able to abstain judgement on certain instances (basically the instances
x ∈ BndO).

As shown by Prade and Serrurier in [40] each hypothesis can be seen as a
possibility distribution over the set of instances, therefore the Version Space
can be seen as a possibility distribution over the set of hypotheses.

We can thus apply the uncertainty measures defined for possibility theory,
in Section 4.3, to Version Space Learning.

In particular we can represent a Version Space V SH,D as a corresponding
set OV SH,D of (mutually exclusive) orthopairs, thus we can give a represen-
tation of a Version Space in terms of a (smaller) set of partial classifiers.

We can thus measure the uncertainty in the Version Space, naturally, as:

H(V SH,D) = H(OV SH,D) =
log2(πOV SH,D )

|H|
In this context, this measure can be linked to the size of the Version Space
and thus it represents the degree of uncertainty determined by the dataset
D over which the Version Space is constructed (ideally |VH,D| = 1).
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This concept of degree of uncertainty of the Version Space, and in partic-
ular the reduction of this uncertainty determined by an instance, is central
to the Query by Committee approach in Active Learning.

The Active Learning problem is a subclass of semi-supervised learning in
which the learner is allowed to query an external rater the real classification
of a given unlabelled instance, with the goal of learning a target concept with
the lowest possible numbers of such queries (for a recent overview of Active
Learning, see [44]).

In the Query by Committee approach, the learner is represented as a
collection of indipendent classifiers and the instances to query are determined
by a criterion over all the classifiers (e.g. a majority vote).

In order to apply the previous measure in this context we first need to
define the reduction of uncertainty determined by an instance.

Let x ∈ X be an instance and O an orthopair, we can define the partial
function O|x1 as:

O|x1 =


O x ∈ P
〈P ∪ {x}, N〉 x ∈ Bnd
⊥ otherwise

similarly we can define O|x0.
We can generalize this definition to a generic set of orthopairs (and, in

particular, to a Version Space) as follows:

O|xl = {O|xl : O ∈ O ∧O|xl 6= ⊥}

with l ∈ {0, 1}.
We can therefore compute the reduction R(O, xl) in uncertainty deter-

mined by instance x in three possible ways:

• Best case:

R(O, x)best = H(O)−maxl∈{0,1}{H(O|xl)}

• Worst case:

R(O, x)worst = H(O)−minl∈{0,1}{H(O|xl)}

71



• Average case:

R(O, x)avg = H(O)− H(O|x0) +H(O|x1)

2

and we thus select as next query the instance for which we obtain the
lowest value of R, under one of the three criteria.

Remark 9. Note that if x is labelled in D, that is C(x) 6= ⊥, then
R(O, xC(x)) = H(O), because there is no reduction in uncertainty.

Note that this approach can be applied even when O is not the Version
Space but only a generic set of orthopairs (that is, a collection of partial
classifiers, learned, for example, with the Three-way Decision Tree Learning
algorithm described in 5.2), however if it does correspond to the Version
Space then the following result obviously follows:

Proposition 24. Let D be a dataset, H an hypotheses space and V SH,D the
corresponding Version Space, represented as a collection of orthopairs.

Then it holds that:

• argminx∈XR(V SH,D, x)best is the optimal instance to query in the best
case;

• argminx∈XR(V SH,D, x)worst is the optimal instance to query in the
worst case;

• argminx∈XR(V SH,D, x)avg is the optimal instance to query in the av-
erage case.

5.4 Multiagent Consensus Formation

In [12], Crosscombe and Lawry defined a model of three-valued consensus
formation.

Let A = {A1, ..., An} be a set of agents, to each agent Ai is associated a
probability distribution wi over O(U) and, consequently, a set of orthopairs
Oi from which we can define the belief pair 〈µ

i
µi〉.

The process of consensus formation proceeds in discrete time-steps, at
each step a pair of agents Ai, Aj are selected and, if their respective distribu-
tion are sufficiently in agreement (the precise criterion is stated in [12]) then
the agents both revise their distributions to the following:

72



wi � wj(O) =
∑

Oih∈Oi,Ojk∈Oj :Oih�Ojk=O

wi(Oih) · wj(Ojk)

Using the uncertainty measures introduced in Section 4.5 and the general-
ization of the � operator introduced in Section 4.4 the described framework
can be extended to the case in which belief aggregation occurs among more
than two agents.

In particular, let 0 ≤ δ ≤ 1 be a threshold and A = {Ai, ..., Ai+k} ⊆ A
a set of agents with the respective sets of orthopairs Oi, ...,Oi+k we can
compute their degree of consistency using the Jensen-Shannon divergence
as:

JS(Oi, ...,Oi+k)

and decide to perform the belief aggregation in case JS(Oi, ...,Oi+k) ≤ δ, in
such a case each of the agents revises its distribution to the following:

�wA(O) =
∑

O1∈Oi,...,On∈Oi+k:�{O1,...,On}=O

Πn
i=1wi(Oi)
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6 Conclusion and Future Works

Orthopairs have been proposed, in the recent years, as a mean to represent
uncertain and bipolar information, highlighting both:

• The relationships with other proposed models to manage uncertainty
(e.g. Fuzzy Sets, Rough Sets, Possibility Theory, Conditional Events,
...);

• The possible applications to Granular Computing.

In this thesis, in order to allow a quantitative treatment of the uncertainty
represented by orthopairs, we developed and studied a variety of uncertainty
measures for orthopairs, considering both measures for a single orthopair and
global measures for collections of orthopairs, in particular:

• We introduced, as the most basic measure of uncertainty for an or-
thopair, a quantity which measures the relative size of the uncertain
elements in the orthopairs; we then provided a theoretical justifica-
tion for this measure by showing that it satifies some appealing sets of
axiomatic requirements and also showing a uniqueness result;

• We studied restrictions of measures proposed in generalized theories to
the setting of orthopairs;

• We introduced a quantity to measure the degree of bipolarity (or un-
balancedness) of the information represented by an orthopair;

• We proposed some basic generalizations of single orthopairs measures to
collections of orthopairs, and then showed properties of these measures
in the context of some specific models of orthopairs (e.g. Rough Set
Theory, Possibility Theory);

• We proposed a generalization of the concept of a partition and then
proposed generalizations of classical information-theoretic measures in
this setting;

• We proposed a variety of applications of the proposed measures in dif-
ferent settings and fields, in particular we conducted some case studies
in the field of Rough Clustering by testing the proposed ideas on real-
life datasets highlighting both:
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– The efficacy of the proposed techniques, with respect to existing
solutions;

– The efficacy of the proposed measures, when used in combina-
tion, as a criterion to establish the quality of a Rough Clustering
algorithm.

For each of the introduced measures we proved interesting results, in
particular monotonicity results which are fundamental because they allow
to compare different proposed models for a certain phenomena, however a
variety of open problems and possible applications, both theoretical and ap-
plicative, exists:

• Further study the proposed measures in order to provide axiomatic
justifications and uniqueness results, as has been done in Section 3.1:
uniqueness results in particular, as highlighted by Klir in [25], are im-
portant because they provide the ultimate justification (on the ground
of some axiomatic requirements) for a proposed uncertainty measure;

• Establish if the alternative definition of entropy hP given for orthopar-
titions in Section 4.6 can be computed in sub-exponential time (since
the naive way to compute it is to generate all compatible partitions
to the given orthopartition), this could be useful in all the proposed
applications of orthopartitions and entropy since this measure is more
stable;

• Further develop possible applications of uncertainty measures and or-
thopairs in the context of Version Space Learning, and more in general
the theoretical framework of Machine Learning, extending the ideas
proposed in Section 5.3;

• Study possible applications of the ideas presented in this thesis to the
field of Formal Concept Analysis (FCA), and particularly Three-way
FCA presented by Qi et al. in [41];

• Study connections and possible applications of the ideas presented in
this thesis to the field of Argumentation Theory, with particular refer-
ence to Probabilistic Argumentation, introduced in the works of Li et al.
[29], and Bipolar Argumentation, introduced by Cayrol and Lagasquie-
Schiex in [7];
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• In order to test the ideas proposed in this thesis to Rough Clustering
we produced a prototypal implementation of the proposed algorithms,
a more efficient one (taking in account the complexity results and sug-
gested data structures highlighted in Section 4.6) could be useful to
enhance the applicability of the algorithms to massive datasets, in the
same way an implementation more integrated in the Weka environment
(or similar) could be useful to enhance the usability of the method;

• Further study the differences and connections between Rough Clus-
tering and C&E Re-Clustering, studying the applicability of the ideas
proposed in this thesis to C&E Re-Clustering;

• Test the algorithms proposed for Decision Tree Learning in Section 5.2
on some real datasets in order to understand the applicability of the
proposed ideas;

• Study the applicability of the extended multi-agent consensus forma-
tion process described in Section 5.4, in a similar way to what have
been done by Crosscombe and Lawry in [12].
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