
Notes Uncertainty in Machine Learning

Andrea Campagner

February 2025

1 Introduction

The aim of these lectures will be to give an introduction to Uncertainty in
Machine Learning (ML). This seems a relevant topic, but we first need to un-
derstand what we mean when we talk about uncertainty.

Looking at the ML literature, there are essentially three notions of uncer-
tainty that have been widely studied [31, 45]:

1. Firstly, in any task that we may want to solve using ML techniques we
are typically not able to access all data on the phenomenon of interest.
For example, we may never hope to get the population of all possible
patients of all possible diseases. Instead, we only typically have access to
limited data. This has profound consequences, in that we generally want
to develop ML models that work well on all of the data, while observing
only a (typically small) portion of it. This, in turn, implies that every
estimate of performance (based only on a finite sample, e.g. a test set)
will be affected by uncertainty (this is the reason we compute confidence
intervals on, e.g., accuracy). This form of uncertainty is called epistemic
uncertainty, as it derives from a lack of knowledge (about the complete
data generating process);

2. Second, not only there is uncertainty due to having access to only limited
data, but the task itself may be uncertain. For example, a task may be
inherently probabilistic/non-deterministic (e.g., quantum mechanics), or
we may want to use probabilities to model our system in a simpler way
(e.g., it would be impossible to measure all variables about a patients...
but if we restrict to just a subset of them, then two patients with the
same description could have different diseases). This is called aleatoric
uncertainty, as it derives from the randomness (real or not) intrinsic in
the problem and (generally, or at least, not easily) ineliminable;

3. Finally, in the two above cases, we have assumed that we have access to
a veritable representation of our phenomenon (albeit potentially incom-
plete). However, in some cases we may not be able to access a truthful and
precise representation of our phenomenon: for example, it may be hard to

1

collect all data (so that we may have missing data, or gaps), to collect it
in a sufficiently accurate manner (so that we may have errors in the data,
or noise), or to collect it at a desired level of granularity/precision. In this
case we speak of data uncertainty or uncertain data.

The first form of uncertainty described above has been the focus of most of
the work in the statistical literature (and, by extension, in ML, especially in its
more theoretically-oriented form). The goal, in this case, is to design algorithms
that are able to learn well (i.e., do not over- or under-fit) from limited data, as
well as studying ways to bound the performance of models.

The second topic has also been studied for a long time in the statistical lit-
erature (keywords are parametric models, consistency, identifiability). The aim
is to design algorithms and models that are not only ”accurate” (whatever that
means) but are also able to provide reliable estimates of the aleatoric uncer-
tainty. Ideally, we may also want to provide a decomposition of the uncertainty
of a model into aleatoric and epistemic uncertainty: this has only been consid-
ered in the ML literature more recently and is the subject of the Uncertainty
Quantification (UQ) subfield [27].

Finally, while the third topic has a long history (missing data have been
studied in the statistical literature since at least the ’70s, see the book by Lit-
tle and Rubin [31]), only more recently it has received increased attention in
the ML community, especially with increasing popularity of the weakly super-
vised learning sub-field [50], that naturally overlaps with the phenomenon of
data uncertainty (in both cases, we want to learn despite having access only
to imperfect information). In recent years, development in this area has been
consolidating within the learning from imprecise data community [24].

The aim of this course will be to provide an introduction to all these three
forms of uncertainty, through a mathematically and algorithmically-oriented
perspective. This means that we will study several computational problems
and, for each of them, our objective will be to provide an answer to the two
following questions:

1. Is the problem solvable? We will be particularly interested in constructive
solutions, i.e. explicit solutions in the form of algorithms;

2. Which resources are required to solve the problem? The main resources we
will be interested in are time complexity (how many computational steps
are required to solve the problem) and sample complexity (how much data
we require to reach a desired level of performance).

2 Mathematical Notation

In this course, we will adopt an abstract, mathematically-oriented approach to
studying Machine Learning models and algorithms. This means that we need
to adopt a precise, formal mathematical notation that enables us to talk about
ML tasks, models, algorithms and their mathematical properties.

2

Think of a ML model you may have used in your work or research. At a
high-level, we conceptualize such a model as a black-box that takes some input
(representing the salient characteristics of an instance) and gives some output
(a prediction). We will try to formalize this idea in a precise manner.

2.1 Learning Tasks

We will denote with X the input space: each object x ∈ X is a representation
of an instance. X could be finite or infinite, and we generally do not make
assumptions about its structure. For some results we may need some specific
additional conditions, for example:

• X is a (d-dimensional, real) vector space (e.g., X = R3);

• X is a metric space (there is some notion of distance among instances)
(e.g., X = R3 with the cosine distance);

• X is a convex set (given any two instances x, y ∈ X, all instances on the
line connecting x and y are also in X) (e.g., X = S2, the sphere in R3

with radius 1).

Figure 1: Example of a convex (S) and non-convex (T) sets.

While X denotes the representation of instances, we are typically interested
in associating some information with these instances. In particular, we will

3

focus on supervised learning, in which each instance is associated with a special,
particularly important piece of information called the target. We assume that
target values are taken from a set Y , called the target space. We will mostly
focus on the binary classification case, in which Y = {0, 1}.

Even though we have talked about instances and targets, so far we have
not established any connection between them... how can we say that a specific
target value is associated with a specific instance?

The most general approach is to assume the existence of a probability mea-
sure D defined over X×Y : intuitively1, we may think of the value D(x, y) as the
probability of observing the labeled pair (x, y). D is called the data-generating
process, as it describes how the data that we may observe can arise.

To understand this scenario, consider the following example: there is some
hospital at which patients (X) are admitted to be treated for one among a set
of diseases (Y). Obviously, not all of the population comes to the hospital at
the same time (and some of them will never come to the hospital!), so we may
think of the process (unknown and very complex) that regulates how patients
come to the hospital as the distribution D defined above.

Note that, in general, we will not assume a deterministic relationship between
X and Y , i.e. we will not assume that ∀x ∈ X,∃!y ∈ Y such that D(x, y) > 0.

In the binary setting (more in general, in regression) the random variable
D(x) = E[Y |x] (that is, the expected value of Y conditioned on the instance
being x) takes a fundamental role since, in general, it is the primary learning
objective (i.e., the thing we want our models to predict). Indeed, D(x) encodes
all relevant information about the data-generating process, if we only care about
predictive performance:

• D(x) = P (Y = 1|x), so it encodes the probability of observing the two
possible labels (because P (Y = 0|x) = 1−D(x));

• D(x) encodes the uncertainty intrinstic in the task: V ar[Y |x] represents
the variability of the target information, and can obviously computed as
D(x)(1−D(x)) (variance of a Bernoulli variable). This is one of the most
commonly applied ways to quantify (and formalize) aleatoric uncertainty
in the literature [12, 13, 38].

We will get back to this point in the following lectures.

2.2 Models, Losses and Algorithms

Now, we have all ingredients that describe a learning task, but we still lack some
pieces: what is a model? how we evaluate its quality? how we select a model
based on data?

1The intuition breaks up when X × Y is uncountable, as commonly happens when we
assume that X is (a subspace of) a real vector space. In this case, to be precise, we will need
to define the measurable sets and we will also need to require that ML models are measurable
functions... we will hide these technicalities under the carpet, but keep in mind that they are
sometimes important!

4

For our purpose, a model (or hypothesis) is a function h : X → Z, where Z
is called the label space. Note that Z may differ from Y ! For example, neural
networks do not generally return a target value (unless some post-processing
is applied, e.g. argmax), but rather a softmax distribution: in this case, Z =
[0, 1]Y (with the added requirement that

∑
y∈Y zy = 1). As mentioned before,

in most of the course Y = {0, 1}: in this case, we will usually assume that,
either, Z = Y , or Z = [0, 1]. Moreover, we will assume that models are selected
from a set H, which is a subset of the set of all function X → Z.

Similarly as for X, we will not assume any general constraints on H. When
needed, we may impose the following constraints:

• H is a (subset of a) vector space (e.g., H = R3, which is the set of 3-
dimensional linear predictors on X = R3);

• H is a convex set (e.g., H = S2, which is the set of 3-dimensional linear
predictors on X = R3 with l2 norm regularization);

• H is an Hilbert space (it is a vector space with an inner product ⟨·, ·⟩ that
defines a complete metric space... imagine a (possibly infinite-dimensional)
Euclidean space) (e.g., H = ℓ2, the set of infinite sequence of real numbers
s.t.

∑
i h

2
i < ∞, with the inner product given by ⟨h, g⟩ =

∑
i higi... this

is the set of infinite-dimensional linear predictors!);

• H is a Reproducing Kernel Hilbert Space (RKHS) [33, 39]. An RKHS is
an Hilbert space, such that it exists a feature map function, ϕ : X → Rd,
where d can also be infinite, such that ∀h ∈ H,∃vh ∈ Rd with h(x) =
⟨ϕ(x), vh⟩... as an example, assume X = R and H is the set of polynomials
over X with degree up to 3. Then ϕ(x) = (1, x, x2, x3) and if h(x) =
a+ bx+ cx2 + dx3 we have vh = (a, b, c, d).

Given a model h and an instance (x, y), how do we evaluate the prediction
of h on x? To this aim, we consider the notion of a loss function, that is a
map l : X × Y ×H → R: the value l(x, y, h) represents the error that model h
makes on instance x when the true target value is y. We will generally assume
that lower values of l denote better predictions. You may have seen several loss
functions in your research:

• If Y = Z, l0−1(x, y, h) = 1h(x)̸=y is the 0-1 loss (also called error rate);

• If Y,Z ⊆ R, l(x, y, h) = (y − h(x))2 is the squared loss (commonly used
in regression tasks... but we will see it is quite important in uncertainty
quantification!);

• If Y,Z ⊆ [0, 1], l(x, y, h) = −y log h(x)− (1− y) log(1− h(x)) is the loga-
rithmic loss (also called cross-entropy, commonly used in deep learning).

In general, we will assume that the loss functions we consider (with the
exception of the 0-1 loss) are convex: that is, it holds that l(x, y, αh1 + (1 −

5

Figure 2: Example of a convex (f) and non-convex (g) functions.

α)h2) ≤ αl(x, y, h1) + (1− α)l(x, y, h2) (notice that this implies that the set of
models H is a subset of a vector space).

While a loss function evaluates the quality of a model on just a single in-
stance, it also gives us the tools to understand whether a model works well for
a task (or not). We define the true risk of a model h as:

Rl(h,D) =

∫
X×Y

l(x, y, h)dD, (1)

that is, we evaluate a model in terms of its expected loss on the whole learning
task, where expectation is computed w.r.t. the data-generating process. When
l and D are clear from context we will write simply R(h). When l = l0−1, the
true risk takes a particularly convenient form:

R0−1(h) = P (h(x) ̸= y) = D({(x, y) : h(x) ̸= y}), (2)

that is, the probability to sample an instance (and corresponding target
value) which is misclassified by the model.

Notice that the definition of the true risk not only provides a way to evaluate
an arbitrary model h, but it also gives an absolute comparison scale in the sense
that it defines (for every learning task) an optimal model. We define a Bayes
predictor to be a model h∗ s.t.

h∗ = argminf measurable functionR(f) (3)

Note that, in general, there is no requirement that h∗ ∈ H (i.e., we may have
selected a class of models that does not include the optimal one... more on this

6

later!). In most cases, it is easy to actually understand what is the form of the
Bayes predictor:

• If l is the Brier score, then h∗(x) = D(x);

• If l is the logarithmic loss, then h∗(x) = D(x);

• If l = l0−1, then h∗(x) =

{
1 D(x) ≥ 0.5

0 otherwise

Note that both the logarithmic loss and Brier score correctly identify the
Bayes predictor as the model that predicts the conditional target probability
D(x): as we mentioned this being the primary objective of learning, this is a
desirable property! By contrast, the 0-1 loss does not satisfy this property...

Now that all ingredients are in place, we can proceed with studying the three
forms of uncertainty we described beforehand.

3 Epistemic Uncertainty, or Learning from Fi-
nite Data

Our discussion identified a clear learning objective: we would like to recover the
Bayes predictor... but is it possible to do so?

The problem, in practice, is that we do not have access to the data-generating
process (otherwise, learning would be trivial!)... instead, we typically only have
access to data sampled from D. Formally, we say that we have a finite sample
(also called training set) S = {(x1, y1), . . . , (xm, ym)} ∼ Dm, consisting of m
instances sampled from D i.i.d. (independent and identically distributed). This
has two deep consequences.

First, since we have no direct access to D, we cannot calculate the true risk
R(h) of a model h. Instead, we can approximate it through the empirical risk :

R̂S(h) =
1

m

∑
(xi,yi)∈S

l(xi, yi, h). (4)

Given the empirical risk, the most natural thing to select a model is to simply
choose (one of the) models that minimize the empirical risk:

ERM(S,H) = hS ∈ argmin
h∈H

R̂S(h). (5)

This approach is called empirical risk minimization and it will be the algorithm
we focus on in this part of the course. An important question, then, is to which
degree the empirical risk is a good approximation to the true risk and, hence,
how close the output of ERM will be to being a Bayes predictor.

Second, as long as our learning algorithm relies on the available data S
(every meaningful algorithm would do so!), the performance of the model hS it
gives as output will be random, because S is random in the first place. For this

7

reason, we will be interested in probabilistic guarantees about the performance
of learning algorithms (ERM in particular), such as:

P (R(hS)−R(h∗) ≥ ϵ) ≤ δ, (6)

where we want to say that δ is as small as possible (as a function of both ϵ,
the error we accept as tolerable, and m, the sample size). This is called the
PAC learning (probably, approximately correct) model in the literature [44]:
the reason for the name is that we aim at learning algorithms that are probably
correct (i.e., close to a Bayes predictor) with high probability, provided the
training data is sufficiently big.

So, the basic question we pose is: given only a finite set S, is it possible to
recover the Bayes predictor h∗, having minimal true risk? We have two huge
problems in facing this question:

1. Since we cannot compute R(h), we cannot directly find h∗... moreover,
notice that we do not even know the value of R(h∗)!

2. Even if we knew R(h∗), given a model h how do we know whether R(h) =
R(h∗) (and so h is a Bayes predictor) if we can only compute R̂S(h) for
an available set of data S?

3.1 Epistemic Uncertainty and Limited Data

The second question is a first form of what we called epistemic uncertainty in
the introduction: since we only have access to limited knowledge (finite data),
we are not able to precisely know the performance of our model... However, in
this case, the problem has an easy answer:

Theorem 1 (Hoeffding Inequality [22]). Let h be a model selected independently
from S and let l be a loss function whose value is bounded in [0, b]. Then, with
probability higher than 1− δ, it holds that

R(h) ≤ RS(h) + b

√
log(1/δ)

2m
(7)

This theorem tells us that, once we know the empirical risk of a model h,
we can also know its true risk (up to some small probability of error) and this
latter is not much larger then former: furthermore, they become closer and
closer as the sample size grows larger. This implies that this form of epistemic
uncertainty is, in principle, eliminable: we can simply obtain more data! This
makes sense: the more information we have, the more knowledge we are able to
extract from it and the less our uncertainty!

Note, hovewer, that the result above requires that h is selected indepen-
dently of S: this means that, for example, the results would be applicable if
we previously trained h on a separate set of data and use S only as test set...
but we cannot apply this result if we compare multiple models on S and select
the best among them, which is what we commonly do when we perform model

8

selection! Fortunately, we can recover very similar guarantees also for this latter
case:

Theorem 2 (Uniform Convergence (for finite model classes)[42]). Let H be a
finite set of models. Let S be a set of data and let l be a loss function whose value
is bounded in [0, b]. Let hS be the result of ERM(S,H). Then, with probability
higher than 1− δ, it holds that

R(hS) ≤ R̂S(hS) + b

√
log(|H|/δ)

2m
(8)

Compared to Hoeffding inequality, we pay only an additional log(H) penalty:
thus, the more models we compare (on S) the larger our epistemic uncertainty.
This provides two ways for reducing our uncertainty: either we increase the
amount of data, or we consider a simpler class of models!

Note, however, that the result requires that H is finite: this may seem a big
limitation (is the set of neural networks with a certain architecture finite?) but
in practice it can always be used because all models have to be represented on
a computer (with finite memory and finite precision)... yet H may grow very
large: in the literature there are generalizations of this result to infinite H but
we won’t cover them in these lectures (see [3, 42, 49] if you’re interested)!

The previous theorems provide a way to resolve the second problem above,
and do so efficiently: indeed, once we have computed the empirical risk of a
model, we can simply compute (an approximation to) its true risk in constant
time... this means that, if somehow we are magically told by an oracle the true
risk of the Bayes predictor R(h∗), we could tell whether our model is also a
Bayes predictor or not.

However, we’ve not yet addressed our first problem: that is, we do not have
an answer yet to the question of whether it is possible to recover h∗ by applying
ERM (with high probability). The (seemingly) simplest way to do so would be
to have the set H (the hypothesis set) contain all possible models: in this way,
we are certain that h∗ is contained in H and we only need to hope that ERM
is able to find it. However, this approach is bound to failure:

Theorem 3 (No-Free Lunch Theorem [48]). Let l0−1 and H be any set of
models. Then, there exists D such that ES∼Dm [R(ERM(S,H)) − R(h∗)] ≥ 1

2 .
This holds, in particular, when H is the set of all possible models.

This theorem implies that we need to know something about the learning
problem we need to solve: otherwise, if we had complete uncertainty, we have
no hope of solving the problem! To better understand this, we can see another
result that enables us to describe the gap between the performance of (the model
resulting from applying) ERM and that of h∗:

Theorem 4 (Error Decomposition [3, 42]). Let H be a (finite) set of models,
l a loss function bounded in [0, b]. For any dataset S, let hS = ERM(S,H).

9

Then, with probability larger than 1− δ over the sampling of S, it holds that:

R(hS)−R(h∗) = R(hS)− R̂S(hS) + R̂S(hS)− R̂S(h
∗) + R̂S(h

∗)−R(h∗)

≤ 2b

√
log(|H|/δ)

2m
+ R̂S(hS)− R̂S(h

∗) (9)

If h∗ ∈ H this implies that, with probability larger than 1− δ:

R(hS)−R(h∗) ≤ 2b

√
log(|H|/δ)

2m
(10)

The theorem says that the gap in performance between ERM(S,H) and the
Bayes predictor h∗ can be decomposed in two parts:

• R(hS) − R̂S(hS) + R̂S(h
∗) − R(h∗) ≤ 2b

√
log(|H|/δ)

2m which stems from

epistemic uncertainty (problem 2 above: given the empirical risk of a
model we’re only able to approximately tell its true risk). This is called
estimation error in the literature, because it is the component of error
that stems from us estimating our models based on finite data;

• R̂S(hS)− R̂S(h
∗), which is the empirical gap in performance between hS

(that we know, since we found it through ERM) and h∗ (that we do not
know). This is called the approximation error in the literature, because it
is the component of error introduced by the fact that we are approximating
h∗ with models in H.

Notice that the estimation error is equivalent to epistemic uncertainty and so
can be quantified (as we have shown above that we’re able to quantify the
epistemic uncertainty) and also reduced, by simply increasing the sample size,
irrespective of the learning problem we are aiming to solve. The approximation
error, by contrast, cannot in general be quantified (since we do not know D and
h∗) and neither reduced without changing H: in principle, it could be made
equal to 0 when h∗ ∈ H but without making assumptions about the learning
task we cannot know whether this holds or not... this is the reason why the No
Free Lunch Theorem arises!

So, these two last theorems provide a (partially) positive answer to our
question: in general, we cannot guarantee that we are able to find the Bayes
predictor h∗ using ERM ... however we can guarantee that we will be able to
do so (with high probability), if h∗ is among the models ERM can select! In
the following lessons we will see that, in most cases, we are still able to obtain
better results and get better guarantees...

3.2 Epistemic Uncertainty and Model Multiplicity

But before moving forward, we note that there is another form of epistemic
uncertainty which is less directly linked to estimation error. Assume that we
have a finite set of data S on which we apply ERM(S,H): this results in a

10

model hS . Even if we could guarantee that h∗ ∈ H we still do not know whether
hS = h∗... because there may other models hi ̸= hS ∈ H s.t. R̂S(hi) = R̂S(hS):
that is, hS may not be the unique empirical risk minimizer!

This phenomenon, called model under-specification [10] or model multiplicity
[4], is a form of epistemic uncertainty: since we only have access to finite data,
we may not be able to unambiguously tell which model is the best one!

However, we can, in principle, quantify also this form of epistemic uncer-
tainty:

EU(H, S)(x) = sup
h∈H:R̂S(h)=R̂S(hS)

h(x)− inf
h∈H:R̂S(h)=R̂S(hS)

h(x). (11)

EU quantifies, for each instance x, the amount of uncertainty we have about
the correct prediction (i.e., the prediction given by the Bayes predictor h∗) by
simply taking the maximum gap in the predictions given by all models that we
consider, based on the available data, as plausible candidates for being h∗.

Notice that, as long as we know that h∗ ∈ H, then due to the error decom-
position, it holds with high probability that:

h∗(x) ∈

[
inf

h∈H:R̂S(h)=R̂S(hS)
h(x), sup

h∈H:R̂S(h)=R̂S(hS)

h(x)

]
.

The interval above, then, can be interpreted as an (instance-wise) confidence
interval for the Bayes predictor h∗. This idea is the foundation for models that
used imprecise probabilities (of which probability intervals as above are a special
case) to model uncertainty in ML [23, 26, 34, 37, 40].

Therefore, the formula for EU tells us that we can quantify the epistemic
uncertainty (due to model underspecification) through the following calculation:
for each instance x we take all models which are possible candidates for being the
Bayes predictor, we take their predictions and compute the maximum possible
gap between them2. If all models provide predictions that are very close to each
other, then our epistemic uncertainty will be small... otherwise, we may have
large uncertainty and known almost nothing about the exact form of the Bayes
predictor (despite being guaranteed to be close to it)!

3.3 A Note on Computational Complexity

Closing this lecture, we note that we talked about algorithms (ERM) and their
guarantees in terms of error... but not about their computational complexity.
What can we say in this regard? Unfortunately, in general, learning through
ERM is a computationally hard problem (for example, it is known that ERM
for neural networks or decision trees is an NP-HARD problem). Under some
assumptions, however, ERM can be solved (approximately) in polynomial time.

2One could also potentially consider other measures of deviation, but the interval length
considered has been particularly justified as a good measure in the literature [37].

11

Theorem 5. Let H be a RKHS, and let l be a differentiable, L-Lipschitz, convex
loss function, i.e. it holds that:

1. l(x, y, αh1 + (1− α)h2) ≤ αl(x, y, h1) + (1− α)l(x, y, h2) (convexity);

2. |l(x, y, h1) − l(x, y, h2)| ≤ L|h1 − h2|H, where | · |H is the norm on H
(Lipschitzness).

Then, assuming inner products can be computed in polynomial time, there exists
a polynomial-time randomized algorithm for ERM : this is obtained by stochastic
gradient descent on H using l as the loss function [35].

The result above applies to a wide class of ML methods, which include all
linear models (regularized or not) as well as all approaches that rely on the
kernel trick (e.g., support vector machines and Gaussian processes).

Concerning the computation of EU , note that even though solving ERM can
be performed efficiently, computing EU may not be easy (because we need to
enumerate all optimal solutions to ERM) or even impossible (when H is infinite
or when l is strongly convex, as in this latter case there exist a single empirical
risk minimizer... which may not be the Bayes predictor!). If there exists an
efficient algorithm for ERM , fortunately, this problem can be approximately
solved using a bootstrapping approach (this idea has been proposed many times
in the ML literature!):

Algorithm 1 Boostrapping algorithm for computing EU
1: procedure BootstrapEU(S: training set, H: set of models, n boots: bootstrap iterations)
2: H ← ∅
3: for i = 1 to n boots do
4: S(i) ← resample S with replacement
5: h← ERM(S,H)
6: Add h to H
7: end for
8: return H
9: end procedure

Under the same assumptions as above (and some additional technical as-
sumptions), the set H returned by Algorithm 1 can be used to compute EU
(furthermore, the convex hull of H contains h∗ with high probability) and com-
puting H only requires time proportional to that of applying ERM . Precisely,
if T is the time required by ERM , then Algorithm 1 has time complexity
Θ(T · n boots): if T is polynomial, then Algorithm 1 also runs in polynomial
time. Then, EU can be computed simply from H in constant time Θ(n boots),
for each instance x, by applying Eq. 11 to set H.

4 Aleatoric Uncertainty, or Learning under Ran-
domness

Let us recall our assumptions on how data is generated. First, we have a distri-
bution D, the data-generating process, which governs how the data is generated.

12

Since, in general, we do not assume that D(x) is deterministic, this implies that
there is some ineliminable source of uncertainty, called aleatoric uncertainty.
This implies that no model (including the Bayes predictor) can have true risk
smaller than some fixed amount that depends on the aleatoric uncertainty. Fur-
thermore, we are not able to access D directly, but rather we can only obtain a
finite set of data by sampling from it. This, in turn, implies that our knowledge
is limited, leading to epistemic uncertainty.

While in the previous lecture we talked extensively about epistemic un-
certainty, in this lecture we will instead focus on aleatoric uncertainty. Before
getting into technical matters, let us convince ourselves why being able to quan-
tify aleatoric uncertainty, as well as being able to distinguish it from epistemic
uncertainty, can be relevant in practical applications of ML.

• Assume we have a task in which the costs of error are different. For
example, if our target is to detect some serious disease (e.g., cancer) then
false negatives (i.e., predicting 0 when the true target is 1) are more serious
than false positives (i.e., predicting 1 when the true target is 0). Given a
patient x, and costs c(FP), c(FN), how we decide how to predict? If we
knew D(x), we could simply predict 1 if (1−D(x))c(FN) ≤ D(x)c(FP),
or 0 otherwise. Aleatoric uncertainty, in this case, gives us an indication of
how much we risk incurring in a wrong decision, and its potential impact.
Note, also, that though in practice we may use h(x), for h being a model,
in place of D(x), this may incur additional error;

• Assume we trained a model h and measured its performance on a val-
idation set S, obtaining some number R̂S(h). According to the error
decomposition in Eq. (9), we know that the true risk of h can be upper
bounded by a quantity that depends on R̂S(h), the epistemic uncertainty
and the risk of the Bayes predictor: this latter, in turn, depends on the
aleatoric uncertainty, in the sense that the larger the aleatoric uncertainty
the larger the risk of the Bayes predictor. If we are able to quantify the
aleatoric uncertainty, then we know what goes wrong with our models and,
consequently, we know how we can get better performance: 1) If the epis-
temic uncertainty is too large, get more data (or consider a simpler class
of models); 2) If R̂S(h) is too large, this may be due to underfitting (then,
we need to consider a more complex class of models); 3) if the aleatoric
uncertainty is too large, we may need to reformulate our learning task.

In both cases, knowing the aleatoric uncertainty enables us to get some value
in practical applications. But how do we compute it?

In the previous lectures, we defined the aleatoric uncertainty to be D(x)(1−
D(x)), that is the (conditional) variance of the data generating process. Thus, to
quantify the aleatoric uncertainty we need to recover the conditional distribution
D(x). This comes, in turn, with two implications:

1. If our aim is to be able to estimate D(x), we need to design and consider a
loss function that guarantees this objective (as an example, we have seen
that the 0-1 loss function does not have this property);

13

2. Estimating the aleatoric uncertainty is intrinsically tied to estimating the
epistemic uncertainty: as we have shown in the previous lecture, limited
data and model multiplicity may affect our ability to recover the Bayes
predictor using ERM.

4.1 Not all Loss Functions are Born Equal: An Excursus

When talking about epistemic uncertainty we were agnostic in the selection of
a loss function: as long as it fits the specific learning task we face, every loss
function is the same. Indeed, any loss function defines and operationalizes a
specific learning problem and defines a target to aspire to: Bayes predictors.

When we talk about aleatoric uncertainty, however, not all loss functions are
the same: since our objective is to be able to recover D(x), which is necessary to
be able to quantify the aleatoric uncertainty, we need to guarantee that (at least
in the limit of infinite data) our Bayes predictors actually predict this quantity.

In previous lectures we showed that the 0-1 loss satisfies the above mentioned
property only in a very weak sense: while the model that predicts, for every
instance x ∈ X, D(x) is a Bayes predictor, it is not the only one. In contrast,
for both the Brier loss and the cross-entropy loss, it can be proven that h∗(x) =
D(x) is the unique Bayes predictor. What distinguishes these losses?

The property that sets apart the above mentioned losses is that of being a
strictly proper scoring rule [17]. A loss function is a strictly proper scoring rule
if the following holds:

Ey∼D(x)l(x, y,D(x)) < Ey∼D(x)l(x, y, h) (12)

for every x ∈ X and every h : X → [0, 1] such that ∃x ∈ X,h(x) ̸= D(x).
That is, a strictly proper scoring rule guarantees that if we had access to infinite
data sampled from D the unique Bayes predictor will actually predict the true
conditional distribution. Both the Brier score and cross-entropy loss are strictly
proper scoring rules, while the 0-1 loss is not. In general, the following result
provides a sufficient and (almost) necessary condition for a loss function to be
a strictly proper scoring rule:

Theorem 6. Let l be a loss function. l is a strictly proper scoring rule if there
exists differentiable and strictly convex (i.e., convex and such that g(αx+ (1−
α)y = αg(x) + (1− α)g(y) if and only if α ∈ {0, 1}) function g such that:

l(x, 1, h) = g(h(x))− h(x)g′(h(x)) + g′(h(x)) (13)

l(x, 0, h) = g(1− h(x))− (1− h(x))g′(1− h(x)) + g′(1− h(x)) (14)

where g′ is the derivative of g.

As an example, for the Brier score we have g(p) = 1−p2, g′(p) = −2p, while
for the cross-entropy loss we have g(p) = p− 1 + (p− 1) log(1− p)− p log p and
g′(p) = 1− log p+ log(1− p).

Given the above properties, in the following we will only consider loss func-
tions that are strictly proper scoring rules. In particular, we will focus on the

14

Brier score, as it enjoys some additional properties. First, it is 2-times differen-
tiable, 2-Lipschitz (i.e., ∀x, |l(x, y, h)− l(x, y, g)| ≤ 2|h(x)− g(x)|), smooth, and
strongly convex: these properties are particularly advantageous from a compu-
tational point of view. More interestingly, the following result holds:

Theorem 7. Let x ∈ X, D be a distribution over X × Y , and l2 be the Brier
score. Define the aleatoric uncertainty at x as AU(x) = D(x)(1−D(x)). Then,
it holds that

Ey∼D(x) [l2(x, y, h
∗)] = AU(x),

where h∗(x) = D(x) is the Bayes predictor with respect to l2.

Thus, the true risk of the Bayes predictor with respect to the Brier score
is the aleatoric uncertainty: this means, that we can reduce the problem of
quantifying the aleatoric uncertainty to the problem of computing the Brier
score! We can also expect that, if h is sufficiently close to h∗, then, R(h) is a
good approximation of the aleatoric uncertainty: thus, our goal will be to find
a model that is sufficiently close to a Bayes predictor (for the Brier score).

4.2 Aleatoric Uncertainty, Optimal Models and Testing

In the previous section, we have seen that the Brier score ensures that, in the
limit of infinite data and if the Bayes predictor belongs to our set of models
H, we would be able to obtain the conditional target distribution, and hence
precisely estimate the aleatoric uncertainty, using ERM.

Even in the case of finite data, where we also have epistemic uncertainty, if
the Bayes predictor h∗ belongs to our set of models H, then, the model obtained
through ERM should be close to h∗ and hence we should be able to obtain a
good approximation to the aleatoric uncertainty. For example, we know that
(with probability larger than 1− δ):

R̂S(hS)− 2b

√
log(1/δ)

2m
≤ Ex∼DAU(x) ≤ R̂S(hS) + 2b

√
log(1/δ)

2m
.

However, this assumes that we know that h∗ belongs to the set of model
H: if this does not hold then, by error decomposition and the No-Free Lunch
Theorem, we know that we may not be able to get close to h∗ and hence obtain
a good approximation to the aleatoric uncertainty... furthermore, we do not
even have a way to check whether h∗ ∈ H or not!

This is, in some sense, a fundamental flaw of ERM when our goal is to be able
to estimate the aleatoric uncertainty (while the epistemic uncertainty comes for
free). In the following we will adopt an alternative approach that:

• Does not require the specification of an a-priori set of models H... rather,
we search through the space of all possible models;

• Is not based on ERM... rather, it employs a very simple test-and-modify
algorithm.

15

In particular, this approach is based on the following three steps:

1. We identify some property P that the Bayes predictor h∗ should satisfy...
this property may be satisfied by other models, and in general we need to
find a trade-off between specificity (fewer models) and feasibility;

2. We design an efficient algorithm T that, given an already existing model
h tests, whether h satisfies the property P using only finite data;

3. If, according to the test T , model h does not have property P then it can-
not be the Bayes predictor... however, we may apply some other efficient
algorithm that modifies h by making it progressively closer to h∗.

Notice that we need to have a model h as a starting point: this can be any model,
for example some naive baseline (e.g., always predict 0 for every instance) or
a model that has already been trained (using some learning algorithm such as
ERM)... in the latter case, however, we need to ensure that training of the
model and the above procedure are executed using separate sets of data. The
set of data used for steps 2 and 3 is typically called, for reasons that we’ll become
clear later, the calibration set.

As a side note, if you are familiar with cryptography, you may find the
above described process to be reminiscent of what you would do to assess if
some sequence (of numbers or text) is random: we think of a property that
random sequences should have (e.g., values should be approximately uniformly
distributed) and then test whether that property holds. This idea has become
quite relevant in modern theoretical computer science and goes under the name
of property testing [18] (though the general focus of this latter field is on ob-
taining algorithms with sublinear time complexity).

So, the first step would be to identify some relevant property satisfied by the
Bayes predictor h∗.

4.2.1 Strong Validity

The first example is (strong) validity : we say that a model h : X → [0, 1] is
valid if:

∀x ∈ X, (h(x)−D(x))2 = 0.

This property seems a good candidate, since obviously h∗ is valid and it is, in
fact, the unique valid model... however, it is impossible to test validity using
only finite data because we would need access to the data-generating process!

Just as an exercise, however, let us see what we could do having access to
D. Let ∆(x) = D(x) − h(x). Then, define a new model h′(x) = h(x) + ∆(x).
Then, the following holds:

Theorem 8. h′ defined as above is valid.

Thus, step 2 in our procedure is simply to compute ∆(x) for each x: if all of
them are 0 then the procedure stops, on the other hand, step 3 simply defines
a new model by adding to h(x) what it lacks to be the Bayes predictor... while,

16

in this case, this algorithms seems trivial, we will see that the same approach
actually works in practice!

4.2.2 Marginal Mean Consistency

Given that validity is too strong of a property, we need to devise some weaker,
but still relevant, properties. Our first tentative in this sense is marginal mean
consistency [36]. We say that a model h has marginal mean consistency error
α if:

MMCE(h) := |Ex∼DX
[h(x)]−Ex,y∼D [y]| = α.

Thus, marginal mean consistency measures the distance between the average
prediction made by model h and the average target value (across all instances).

Obviously, the Bayes predictor has marginal mean consistency error equal
to 0... however, also other models may have this same property (in contrast
to validity). For example, the model hM (x) = Ex,y∼D [y] that always predicts
the average target value is marginally mean consistent (even though all of its
predictions are wrong)!

Thus, marginal mean consistency is a rather weak property, but is nonethe-
less a good first step: if a model is not even marginally mean consistent (that
is, MMCE > 0), then surely it is not the Bayes predictor h∗!

Given a model h that is not marginally mean consistent, how can we improve
it to satisfy this property? Define ∆ = Ex,y∼D [y]−Ex∼DX

[h(x)] and h′(x) =
h(x) + ∆. Then, the following holds:

Theorem 9. h′ defined as above is marginally mean consistent. Furthermore,
it holds that R(h′) = R(h)−∆2 ≤ R(h).

Thus, not only making a model marginally mean consistent is easy, but doing
so also gets us closer to the Bayes predictor... however, the above approach
requires access to the data-generating process!

It is easy, however, to turn the above process into a practical algorithm that
works on finite data, by simple replacing expectations with sample averages.
This results in Algorithm 2. It is easy to show that the following result holds:

Theorem 10. Let h′ be the model returned by Algorithm 2 on any input model
h and calibration set S of size m. Then, with probability larger than 1 − δ, it
holds that

MMCE(h′) ≤
√

log(1/δ)

2m
.

Furthermore, Algorithm 2 runs in Θ(m) time and then requires Θ(1) for each
prediction on a new instance.

Thus, we have shown that it is easy to guarantee marginal mean consis-
tency... however, this property is relatively weak as shown previously. The
main problem with marginal mean consistency is that it is a marginal property:

17

Algorithm 2 Algorithm for Marginal Mean Consistency improvement.
1: procedure MMC-Improve(S = {(x1, y1), . . . , (xm, ym)}: calibration set, h: model)

2: ˆDelta← 1
m

∑m
i=1 yi − 1

m

∑m
i=1 h(xi)

3: Define h′ : X → [0, 1] by h′(x) = h(x) + ∆̂
4: return h′

5: end procedure

this means that it does not consider in any way the instances x, but only aver-
aged population statistics. In contrast, validity is a fully conditional property,
as it defines a constraint that should hold for every instance: this ensures that
it is a strong property (only the Bayes predictor satisfies it) but, in practice,
it is impossible to enforce it while having access only to finite data... we need
some properties that bridge this gap!

4.2.3 Calibration

Calibration is a property that sits between marginal (e.g., marginal mean con-
sistency) and fully conditional (i.e., validity). Technically, we say that a model
h is calibrated if:

E[y|h(x) = p] = p, (15)

that is, if the average target value, conditioned on the model’s prediction being
equal to p, is also equal to p. If a model h is not calibrated, we say that its
calibration error is equal to α if:

K2(h) :=

∫
DX(h(x) = p) (h(x)−E[y|h(x) = p])

2
= α.

Calibration is an interesting property because it is obviously satisfied by the
Bayes prediction and, furthermore, it enables us to interpret the predictions
of our models as probabilities. So far we have considered models that predict
numbers between [0, 1] and implicitly assumed that these represent probabilities:
this is also what you typically do when using neural networks or other models
with a softmax... however, these numbers may not represent probabilities (in a
frequentist sense3)!

As an example, consider a model that, for a certain group of patients C ⊆
X, predicts that they will develop some disease with h(x) = 70%,∀x ∈ C...
however, P (disease|x = C) = 30%, that is only 30% of the patients in the group
will actually develop the disease. Thus, the model overestimates the actual
probability. Similarly, a model could also underestimate the actual probabilities

3In some sense, calibration is related to the subjective vs frequentist debate in probability
theory. The predictions of ML models, as long as they are in [0, 1] can always be interpreted
as subjective probabilities because, in a sense, they represent the confidence of the model.
However, in practice, we are interested about frequentist probabilities: if we make some
prediction about the probability of an event, this should match the actual frequency of that
event! The predictions of a model can be understood as probabilities (in the frequentist sense)
if and only if the model is calibrated: for this reason, the model’s predictions are usually called
confidence scores in the Uncertainty in ML literature, rather than probability scores.

18

Figure 3: Calibration plot: it illustrates the relationship between a model’s
predictions and true probabilities

of an event... the important thing to note, however, is that both underestimation
and overestimation of probabilities happen only when a model is not calibrated:
if a model is calibrated, predicted scores correspond to actual probabilities! This
issue is illustrated in Figure 3.

In the following, we will make the assumption that our models have finite
range, that is the set

C(h) = {p ∈ [0, 1]|∃x ∈ X,h(x) = p}

has finite cardinality. In this case, the expectation in the definition of the
calibration error K2 can be replaced with an average, and we can easily test (in
principle, if we had access to the data-generating process) whether a model is
calibrated.

How we can modify a non-calibrated model to make it calibrated? The
algorithm we will define is based on making isolated modifications to a model,
based on an operation called value patch:

V P (h, p 7→ p′, x) =

{
p′ h(x) = p

h(x) otherwise
.

Intuitively, given an arbitrary value p ∈ C(h), we know that if h was cal-
ibrated it should hold that E[y|h(x) = p] = p... if this does not hold, then

19

h is not calibrated and we could reduce the calibration error of h by simply
computing the value patch V P (h, p 7→ E[y|h(x) = p]): thus, we replace the
current prediction of h with the corresponding correct probability. This simple
idea can be easily turned into an algorithm by applying value patches iteratively
and replacing expectations with sample averages. In particular, if we define the
empirical calibration error as:

∑
p∈C(ht)

(
1

m

m∑
i=1

1ht(xi)=p

)(
p− 1

m

m∑
i=1

1ht(xi)=pyi

)2

, (16)

we obtain Algorithm 3 [19, 21, 36].

Algorithm 3 Algorithm for Model Calibration.
1: procedure Calibrate(S = {(x1, y1), . . . , (xm, ym)}: calibration set, h: model, ϵ: target cali-

bration error)
2: h0 ← h
3: t← 0

4: while
∑

p∈C(ht)

(
1
m

∑m
i=1 1ht(xi)=p

)(
p− 1

m

∑m
i=1 1ht(xi)=pyi

)2
> ϵ do

5: v ← argmaxp∈C(ht)

(
1
m

∑m
i=1 1ht(xi)=p

)(
p− 1

m

∑m
i=1 1ht(xi)=pyi

)2

6: p′ ← 1
m

∑m
i=1 1ht(xi)=pyi

7: Define ht+1 : X → [0, 1] by ht+1(x) = V P (ht, p 7→ p′, x)
8: t← t + 1
9: end while

10: return ht

11: end procedure

Algorithm 3 satisfies the following guarantees:

Theorem 11. Let h′ be the model given as output by Algorithm 3 on an arbi-
trary input h and S. Then, after T ≤ m

ϵ iterations and with probability greater
than 1− δ it holds that

K2(h
′) ∈ O

ϵ+

√
log(1

ϵ2δ)

ϵ3m
+

log(1
ϵ2δ)

ϵ3m

 .

Furthermore, with probability higher than 1− δ, it holds that R(h′) ≤ R(h).

Thus, similarly to marginal mean consistency, we can ensure we obtain a
model close to being calibrated by means of a relatively simple algorithm whose
time complexity is O(poly(m, 1

ϵ)). Note, however, that since calibration is a
stronger property than marginal mean consistency, it is harder to enforce it.
Indeed, we are not guaranteed to obtain a calibrated model, but only a model
that (with high probability) has calibration error lower than a certain threshold:
the smaller the calibration error we are willing to tolerate, the harder it is to
enforce the property using Algorithm 3.

As a final point, note that the efficiency of Algorithm 3 critically depends on
C(h) being finite and possibly small: otherwise, steps 4 and 5 in the Algorithm
may be very costly! In practice, there are algorithms that can be used to

20

calibrate models when C(h) is large or even infinite (see e.g. the recent survey
[43])... these algorithms, however, do not come with theoretical guarantees (or
do so only under additional assumptions), so there is a trade-off to be made!

4.2.4 Going Beyond Calibration

One natural question is by how much is calibration stronger than marginal
mean consistency. The answer, however, is far from being trivial: for example if
|C(h)| = 1 (i.e., h always predicts the same value) then calibration and marginal
mean consistency actually coincide!

In general, however, calibration is a strictly stronger property and its strength
depends in a non-trivial way on the size of the range of the models we consider.

In any case, calibration is in general strictly weaker than validity, so it may be
of interest to consider other properties that bridge this gap. The most natural
generalization in this sense is the notion of multicalibration (short for multi-
group calibration) [21]. While calibration is still a marginal property4, mul-
ticalibration is an attempt to bridge the gap towards full conditionality (i.e.,
validity) by requiring that calibration holds not just with respect to the whole
population, but also with respect to some notable sub-groups.

As an example, assume we want to predict the probability of patients de-
veloping some disease. Calibration simply asks that for each prediction p made
by the model, exactly p ∗ 100% of the patients will actually develop the disease.
However, if we stratify patients by biological sex (males, females, possibly along
with intersex, if this may be clinically relevant) it could still hold that for some
groups either fewer (or more) than p ∗ 100% patients in that group will actually
develop the disease. Hence, multicalibration requires that the above mentioned
guarantee holds not only for all patients (disregarding biological sex), but also
for males, females (and possibly intersex individuals) at the same time.

In general, multicalibration is defined with respect to a set of groups G, where
each group g ∈ G is g ⊆ X (equivalently, g : X → {0, 1}). The multicalibration
error (with respect to G) is defined as:

K2(h,G) :=
∑
g∈G

∫
DX(h(x) = p, x ∈ g) (h(x)−E[y|h(x) = p, x ∈ g])

2

and we say that a model h is multicalibrated when K2(h,G) = 0.
Multicalibration is actually a spectrum of properties that ranges from cal-

ibration (when G = X) to validity (when G = {{x}|x ∈ X}), as illustrated in
Figure 4, and it can also be extended to more general models (e.g., regression
models where Y = R, in this case we talk about multiaccuracy [28]).

Interestingly, multicalibration can be tested and enforced using an algorithm
which is very similar to Algorithm 3 [21, 36] (the only modification required is
to add also the conditioning on the groups in steps 4, 5 and 6 of the algorithm,

4Indeed, calibration does not look into the instances, insofar we know the associated pre-
dictions made by the model.

21

Figure 4: Spectrum of possible guarantees that could be required for a model
h : X → [0, 1]. Mean marginal consistency is the most basic property: stricter
guarantees can be seen as refinements of marginal mean consistency, in which
we ask the same guarantee to hold for finer and finer groups.

as well as slightly revising the definition of the Value Patch operation). For this
reason, we won’t cover in detail this topic, which has been discussed in several
recent articles. Nonetheless, it is important to note that while guarantees similar
to Theorem 11 can be given also for multicalibration, they have an additional
dependency on |G|: this is reasonable, as the more groups we want to control
for, the harder the problem it becomes (because we are asking for guarantees
that come progressively closer to validity).

4.3 Conformal Prediction: Uncertainty Quantification Be-
yond Probabilities

In the previous lectures we focused mostly on probabilistic classifiers: that is
models that provide as output (something that can be interpreted as) probability
distributions over the target space. This seems reasonable, since our goal is to
recover the actual conditional target distribution.

However, in the literature, it has been argued that probability theory is not
an adequate way to model and quantify and uncertainty when we have both
epistemic and aleatoric uncertainty [27]. Indeed, if you notice, in our discussion
of epistemic uncertainty, our estimates of uncertainty were always in the forms
of intervals rather than point-wise probabilities.

A similar discourse has also be seen in statistics, where one can compare point
estimators [30] and interval estimators [20] (e.g., confidence intervals). While
point estimates are more useful when making decisions, interval estimates are
typically better at conveying uncertainty and usually provide better guarantees
when one is interested in prediction (and decision is undertaken as a separate
step). This is particularly relevant in risk-sensitive applications (e.g., medicine,
or legal decision-making), where typically we do not want AI and ML systems
to make decisions on their own, and we are instead interested in conveying as
best as possible the uncertainty to the human decision-makers.

In this lecture we will study a family of methods, called conformal prediction,
whose aim is to apply the ideas of interval estimation to the realm of ML [2, 41,
47], and which has become quite popular in modern ML.

22

The central notion of conformal prediction is that of non-conformity score

s : (X × Y)m × (X × Y) → R.

Intuitively, a non-conformity score measures, on the basis of a calibration set
C = {(x1, y1), . . . , (xm, ym)}, measures how strange (different, dissimilar, non-
conforming) a new instance (x, y) looks relative to the previously seen data.

Given these elements, we define the p-value of (x, y), given C, to be the
fraction of instances in C that are as strange as, or more, than (x, y) as measured
by the non-conformity score:

pC,s(x, y) =
|{i ∈ [1,m] : s(C \ {(xi, yi)} ∪ {(x, y)}, (xi, yi)) ≥ s(C, (x, y)}|+ 1

m+ 1
(17)

Thus, the p-value of an instance is close to 0 when that instance is considered to
be “very strange”, while it will be close to 1 when the instance is quite “typical”.

Finally, we define a conformal predictor, with respect to a non-conformity
score s, to be a function Γ : [0, 1]× (X × Y)m ×X → 2Y defined as:

Γϵ
s(C, x) = {y ∈ Y : pC,s(x, y) ≥ ϵ} (18)

That is, a conformal predictor takes as input a calibration set C, a confidence
level ϵ and an unlabeled instance x and gives as output the set of target values
Γϵ
s(C, x) whose p-value is greater than ϵ.
Intuitively, the set Γϵ

s(C, x) should be interpreted as a confidence set : with
high confidence, the true target value associated with x should be contained in
the set. This interpretation is guaranteed by the following Theorem.

Theorem 12 ([1]). Let D a data-generating process. Let s be a non-conformity
score. Then, given a calibration set C sampled i.i.d. from D it holds that:

P(x,y)∼D(y /∈ Γϵ
s(C, x)) ≤ ϵ+O(

1

m
).

The property above is called (weak) validity (or coverage) in the conformal
prediction literature, but note that it is a considerably weaker property than
strong validity, as we defined in the previous lectures (hence the prefix “weak”).
Indeed, weak validity is a marginal property: it only guarantees that, on ex-
pectation with respect to all the population, the confidence sets produced by
conformal prediction will fail to contain the correct target value at most a ϵ
fraction of times. However, similarly to the difference between calibration and
multicalibration, there exist extensions of conformal prediction that provide also
conditional guarantees [16].

Note that Theorem 12 holds irrespective of the non-conformity score, this
gives considerable freedom in designing non-conformity score that can optimize
different resources. Most relevantly, the non-conformity score influences the
size of the sets Γϵ

s: obviously, sets that are too large are not particularly useful
(consider the trivial conformal predictor that always gives as output the full

23

set of target values Y), and thus we are typically interested in designing non-
conformity scores that minimize the expected confidence set size. Notice that
this stands in contrast with the standard approach we take when we design ML
algorithms: in this latter case, our focus is on designing methods that can reach
good accuracy. With conformal prediction, instead, accuracy comes for free due
to Theorem 11, however we want to make our confidence sets to be as “specific”
(small) as possible.

A natural question, at this point, is which non-conformity scores one should
use. In practice, there is particularly popular and effective strategy. Let h :
X → [0, 1]Y be a ML model that has been previously trained on a training set
S separate from C. Then, we set sh to be the non-conformity score defined as:

sh(C, (x, y)) = 1− h(x)y,

that is, the non-conformity score for instance (x, y) is simply the complement of
the confidence score that h assigns to label y. Thus, intuitively, the higher the
confidence score h(x)y the more typical (with respect to data-generating process)
the instance (x, y) is. When using the non-conformity score sh, the conformal
predictor Γs is usually called inductive conformal predictor. Note that sh does
not consider the calibration set C, so its computation is particularly efficient.

More generally, in regard to computational complexity, conformal prediction
is a lazy approach, in the sense that there is no proper training of a model,
but rather all work (for constructing the confidence sets Γϵ) is performed at
inference time. In general, if S is the time complexity required to compute
the non-conformity score s, then conformal prediction requires time Θ(mS +
m|Y |+ S|Y |). In the case of inductive conformal prediction, if we pre-compute
the non-conformity scores of the instances in the calibration set and sort them
(this requires total time O(m+m logm), as S = O(1)), then the complexity at
inference time can be reduced to O(|Y | logm).

5 Data Uncertainty, or Learning with Imperfect
Data

In the previous lectures we focused on epistemic and aleatoric uncertainty. The
crucial assumption, in both cases, is that our data are perfect: they may be
limited, but they always are a complete and truthful representation of the phe-
nomenon of interest.

In practice, however, this may not hold: data can have gaps (missing data),
may be wrong or erroneous (noisy data), or may be only partially known (impre-
cise data). These issue can make learning much more difficult, as conventional
ML algorithms may not satisfy their usual guarantees under such conditions
(or, in some cases, may not be even used at all!). In this lecture we will try
to understand how can we learn effectively when we have such imperfect data,
focusing on the case of missingness.

24

5.1 Missing Features

When working with real-world datasets, it often happens that data are not
complete: there may be some values that are not observed and hence aremissing.
An example of this issue is illustrated in Table 1.

Table 1: An example of a dataset with missing feature values.
Headache Fever High Pressure Flu?

Y N Y Y
N N ⊥ N
⊥ Y ⊥ Y

Data may be missing for several different reasons:

• Non-systematic missing: data is missing due to essentially random reasons
(e.g., a measurement instrument sometimes not working);

• Systematic missing: data is missing for some specific reason. An example,
illustrated in Table 1, would be not measuring the blood pressure to a
patient that has no other specific symptoms.

In any case, the possibility of missing data, implies that we can no longer
rely on the simplified data generation assumptions we made so far.

Let us assume that X = Rd and denote with Xi the i-th feature. Then,
we assume that, for each feature it exists a distribution Mi defined over X1 ×
. . . Xi×. . . Xd×Y ×Xi∪{⊥}: the symbol ⊥ denotes a missing value. We will be
particularly interested in the conditional distributions Mi(⊥|X1 = x1, . . . , Xi =
xi, . . . , Xd = xd, Y = y), that is the probabilty of observing a missing value in
the i-th feature given that the true instance was (x1, . . . , xi, . . . , xd, y).

Given this setup, we assume that our data is generated according to the
following two-step mechanism:

1. First, we sample a (complete) instance x = (x1, . . . , xd, y) according to
the data-generating process D;

2. Then, for each feature i, the corresponding value xi is either set to ⊥
(with probability Mi(⊥|X1 = x1, . . . , Xi = xi, . . . , Xd = xd, Y = y)), or
its original value is kept.

Importantly, we can distinguish three different types of missing data, depend-
ing on how the conditional distributions Mi(⊥|X1 = x1, . . . , Xi = xi, . . . , Xd =
xd, Y = y) are allowed to depend on the actual values of the underlying instance
(see also Figure 5):

• Missing Completely at Random (MCAR): if Mi(⊥|X1 = x1, . . . , Xi =
xi, . . . , Xd = xd, Y = y) = Mi(⊥). That is, the probability of observing
a missing value in feature i is completely independent of the underlying
instance x and only depends on the feature index;

25

Figure 5: An illustration of the three types of missing data.

• Missing at Random (MAR): if Mi(⊥|X1 = x1, . . . , Xi = xi, . . . , Xd =
xd, Y = y) = Mi(⊥|X1 = x1, . . . , Xi−1 = xi−1, Xi+1 = xi+1, . . . , Xd =
xd, Y = y). That is, the probability of observing a missing value in feature
i can depend on all the other features (or the target value) but not on
feature i itself;

• Missing Not at Random (MNAR): if the above do not hold. That is, the
probability of observing a missing value in feature i could also depend on
the unobserved value xi itself.

These three types of missing data have different implications about the hard-
ness of learning with missing data, as well as about the ways learning can be
done in practice. Obviously, we can expect MAR to be harder than MCAR,
and MNAR, in turn, to be harder than both MAR and MCAR.

In general, we may ask: how can we learn when some data is missing? Tra-
ditional ML algorithms (think of backpropagation in neural networks) cannot
be applied when data is not complete! In the following we will examine sev-
eral popular approaches proposed in the literature, and analyze under which
conditions we can expect them to work (and with which guarantees).

5.1.1 Listwise Deletion

The simplest way to address the issue of missing data is listwise deletion (also
called, complete data analysis): we simply discard all instances having at least
one missing value, and then apply our learning algorithms as if all data were
completely observed. This approach is intuitively wasteful: we are throwing
away a lot of potentially useful data. However, at least, we know that under
certain assumptions learning after listwise deletion is the same as learning if the
data were completely observed from the start:

Theorem 13. Assume that the missing data is MCAR. Then, with probability
larger than 1− δ (over the sampling of a training set S of size m) it holds that

R(hS)−R(h∗) ≤ 2b

√
log(|H|/δ)

2|SC |
, (19)

26

where SC is the subset of S having only complete data. In particular, assuming
∃p ∈ [0, 1],∀i ∈ [1, d],Mi(⊥) = p, then the right-hand expression above is
approximately equal to:

R(hS)−R(h∗) ≤ 2b

√
log(|H|/δ)
2m(1− p)d

. (20)

Furthermore, learning can performed with an additional time complexity penalty
of Θ(md).

Thus, listwise deletion enables using traditional learning algorithms, at the
expense of throwing away a portion of the data.

However, this approach has several issues. First of all, as already observed
above, listwise deletion can be extremely wasteful, and Theorem 13 quantifies
this waste: in general, penalty we pay (in terms of additional true risk our
models can suffer) increases exponentially with the data dimensionality (note, no
explicit dependency on the dimensionality exists in the complete data setting)!

Furthermore, listwise deletion is guaranteed to work only when the missing
data is MCAR. This assumption may be unrealistic in many cases: measurement
instruments having larger probability of failure on anomalous values (MNAR),
doctors not recording normal values (MNAR), values that are not recorded
because they are irrelevant given the other values (MAR or MNAR). In all such
cases, listwise deletion can lead to erroneous results and we risk under-estimating
the true risk of our models.

5.1.2 Imputation

A more general approach, which aims at addressing the limitations of listwise
deletion, is imputation: in this case, rather than discarding incomplete in-
stances, we attempt to reconstruct the unobserved values. Imputation is by
far the most common approach to deal with missing data: the general idea is to
first replace the missing data with a plausible guess about the unobserved value,
and then training a ML model by means of traditional learning algorithms.

Common approaches in this sense include mean (for continuous data) and
mode (for categorical data) imputation, in which all missing values in a given
feature are replaced with the corresponding mean (or mode), computed consid-
ering only the complete data. While this approach can sometimes work well,
it generally fails when the data is not MCAR, and, even in this latter case, its
properties are not clear!

In this lectures, we will consider a more general, and currently more popular,
approach called regression imputation. The general idea of regression imputa-
tion is the following:

1. First, train, for each feature Xi, a regression model hi that predicts the
value of Xi based on the other features. Obviously, each hi is trained only
on the set of complete data (similarly to listwise deletion);

27

2. Second, impute (that is, fill) the missing data in each feature using the
trained regression models;

3. Finally, train the desired ML model on the imputed data.

In practice, steps 1 and 2 in the above procedure must be repeated iteratively
when multiple features can be missing at the same time: this means that while
at the first round only the complete data are used to train the regression mod-
els, subsequent rounds will employ all the data (using the temporary imputed
values). This approach, for example, is adopted by the MICE algorithm [46]
and illustrated in Algorithm 4.

Algorithm 4 Algorithm for Regression Imputation.

1: procedure Impute(S = {(x1, y1), . . . , (xm, ym)}: dataset, R: set of regression models, H: set
of models, n: number of imputation steps)

2: S1 ← S
3: for k = 1 to n do
4: for i = 1 to d do
5: Create dataset S′ from Sk by replacing, for all features j ̸= i, ⊥ with mean(Xj)
6: Set the i-th feature of S′ equal to that of S
7: Discard from S′ all instances for which the i-th feature is equal to ⊥
8: rki ← train on S′ a regression model from R to predict feature i

9: Create dataset Sk+1 from S by replacing ⊥ in feature i with the predictions of rki
10: end for
11: end for
12: h← train a model from H on Sk

13: return h, rn1 , . . . , rnd
14: end procedure

Algorithm 4 is conceptually simple: we try to use the information in the
complete values to reconstruct the unobserved ones. Therefore, conceptually,
we may expect the approach to work when the missing data is MCAR or MAR
(when it is MNAR, the missingness can also depend on the unobserved values,
and thus only using the information in the other features is not sufficient), as
long as the regression models are able to reconstruct a good approximation of
the real values. However, under which conditions does the approach really work?

To this end, we define the notion of noise stability, which encodes the intu-
ition above. Let D be a data-generating process over X×Y and assume that X
is a d-dimensional vector space. Let Corrupt : X × Y 7→ X × Y be a function,
such that

E[|(x, y)− Corrupt(x, y)|] ≤ ϵ. (21)

Intuitively, the function Corrupt defines, in an abstract way, the action of an
imputation function. Therefore, Eq. (21) expresses the condition that the
imputation function should not introduce too much noise.

A learning algorithm A for a set of models H is ϵ-noise stable, if, for any δ >
0, with probability larger than 1−δ, given a dataset S = {(x1, y1), . . . , (xm, ym)}
sampled from D and T = {Corrupt(xi, yi)|(xi, yi) ∈ S}, and defining h =
A(S), g = A(T), it holds that

∥h− g∥ ≤ pH(ϵ,m, d, δ) ∈ poly(ϵ, d, δ) · o(
√
m). (22)

28

That is, a learning algorithm is noise stable if, given two datasets that (on
average) are not too different from each other, the models obtained by training
on the datasets will not be too different from each other (with high probability):
in particular, this deviation is bounded by a function which depends on (and
does not grow too fast with) the problem’s parameters.

The notion of noise stability enables us to characterize under which condi-
tions Algorithm 4 is expected to work well.

Theorem 14. Assume the following:

• All models in Algorithm 4 are trained using ERM;

• The regression models used for imputation are trained using the a loss
function bounded in [0, b1];

• The final model is trained using a loss function l that is bounded in the
range [0, b2] and L-Lipschitz;

• H is such that ERM is ϵ-noise stable;

• h∗ ∈ H (i.e., the approximation error is 0).

Additionally, for simplicity, assume that both H and R are finite sets of models.
Then, with probability larger than 1− δ it holds that:

R(h)−R(h∗) ≤ 2b2

√
log(2|H|δ)

2m
+L ·pH(d max

i∈[1,d]
Si
C(r

n
i)+db1

√
log(2d|R|δ)

2m
,m, d),

where h, rni are the the ouputs of Algorithm 4, and Si
C is the subset of S with

no missing values in feature i.
Additionally, if T (R,m, d) and T (H,m, d) are the time complexities for

training models R and H, then the time complexity of Algorithm 4 is

O(kd · T (R,m, d) + T (H,m, d)).

Thus, if ERM is noise stable for our set of models, then regression imputation
works with guarantees similar to those that hold when learning from complete
data. Note, however, that compared to the latter case, with regression imputa-
tion we pay an additional penalty. Indeed, we pay a penalty pH(ϵ,m, d) which
derives from the fact that our imputed data will not in general be exactly equal
to the real unobserved data, but will be rather contaminated with a noise of
size ϵ. This penalty is controlled by the stability of our learning algorithm un-
der noise (i.e., the term pH(ϵ,m, d)), as well as by the complexity of the set of
regression models R (which governs the term ϵ).

This latter dependency, in particular, is far from trivial: a larger set of
models will reduce the component dmaxi∈[1,d] S

i
C(r

n
i) while at the same time

increasing the component db1

√
log(

2d|R|
δ)

2m . Note, however, that simply having
the Bayes predictor to be in R does not suffice to guarantee that we will able

29

to learn a good model after imputation. In practice, we need to guarantee that
each of the features can be reconstructed having only information about the
other features: in other words, regression imputation is guaranteed to work well
only under the MAR assumption!

A natural question, at this point, is whether there exist learning algorithms
that are noise stable. The following results shows that there exists at least one
model that satisfies this guarantee and characterizes the stability pH.

Theorem 15. Let H be the class of linear models, l be the Brier score, and
consider the ERM learning algorithm. Assume that X ⊆ Rd and all instances
are normalized (i.e., ∥x∥ = 1) and all features are centered (i.e., E[Xi] = 0).
Assume that the precision matrix (the inverse of the correlation matrix)

(E[(xi − µi)(xj − µj)])
−1

is sparse (i.e., the number of non-zero entries is o(m2)). Then, ERM is ϵ-noise
stable for H with

pH(ϵ,m, d) ≤ 3d2
√

2 ∗ log(2/v)
m

+ dϵ.

So, there exists at least one class of models (namely, OLS linear regression...
however, the result above can be extended to every RKHS of models) that is
learnable after imputation (provided the imputation is good enough). Note,
however, that the complexity of the problem grows with the dimensionality of
our data: this is a manifestation of the so-called curse of dimensionality ! Thus,
in practice, applying dimensionality reduction or feature selection can be crucial
for obtaining good results: though traditional approaches cannot be applied (as
they require complete data), efficient algorithms exists for this problem [7, 11]!

An additional limitation of regression imputation is that the above results
are guaranteed to hold only when the missing data is not MNAR: unfortunately,
as hinted at above, in many settings this assumption is clearly too strong... so
what can we do when our data is MNAR?

In practice, the above question is even more important than it seems, as it
is impossible to check whether the missing values in a given dataset are MCAR,
MAR or MNAR! We can illustrate this issue with a simple example:

• Let X = R2;

• Consider the data-generating process D1 such that D(x1, x2) > 0 if and
only if x2 ≥ 0, and assume that missing values can occur only in featureX2

with missingness process M2(⊥|x1, x2) = 0.5 (i.e., we have probability 0.5
of not observing the value of x2, irrespective of anything). Then, clearly
the missing data are MCAR;

• Consider, in contrast, the data-generating process D2 such that ∀(x1, x2)
it holds D(x1, x2) > 0. Assume that missing values can occur only in
feature X2 with missingness process M2(⊥|x1, x2 < 0) = 1 (we never
observe negative values in x2) and M2(⊥|x1, x2 ≥ 0) = 0.5. Then, clearly
the missing data are MNAR;

30

• Crucially, given two datasets S and T drawn, respectively, from the two
processes described above we have no way to tell which process generated
which dataset!

There are basically two ways to deal with MNAR data:

1. The first approach is to gather some information about the process that
generates the missingness and then incorporating this information in the
way we train models: some popular strategies in this sense are likelihood-
based models [14, 31] and multiple imputation [45]. Multiple imputation
(which is used, for example, by MICE) is particularly attractive because it
allows us to decouple the management of missing data and model training;

2. The second approach is to perform a worst-case analysis: that is, we try
to understand how our models fare under the worst possible imputation
of the data.

In the following section we will show how this second approach works, by ex-
emplifying it in the case of missing target values (rather than missing data).

5.2 Missing Targets

While in the previous section we talked of missing data as if this issue could only
affect features, in practice missing values can also appear in the target feature:
that is, we could miss information about the thing we would like to predict!
This problem is called semi-supervised learning [9] in the literature.

Table 2: An example of a semi-supervised datasets.
Headache Fever High Pressure Flu?

Y N Y ⊥
N N Y N
N Y N ⊥
Y N N N

From a theoretical perspective, there is no distinction between these two
cases: everything we said about missing features can equally be applied to
missing targets: this includes the distinction between MCAR/MAR/MNAR as
well as the approaches we described to address the problem. From the practical
point of view, however, the two problems are quite different from each other:

• In semi-supervised learning we have all the information which would be
needed to use our models: however, in some cases, we do not know what
these models should say;

• In semi-supervised learning we are not typically interested in imputation:
that is, we do not need to “fill the gaps” in our data; rather, we want
to somehow use the information in all the available data (including the
data without an associated target value) to train a model. Thus, we are
typically more interested in induction rather than transduction [15].

31

So, given these differences, how can we deal with semi-supervised learning?
A first approach would be to adapt the notion of regression imputation to this
setting: rather than reconstructing missing data, we try to guess the unobserved
target values and then use this guesses to train a ML model. This approach is
called pseudo-label learning [29] and is illustrated in Algorithm 5.

Algorithm 5 Algorithm for Pseudo-Label Learning.
1: procedure Pseudo-Label Learning(SC = {(x1, y1), . . . , (xm, ym)}: dataset with observed

target values, SI = {c1, . . . , cm}: dataset with unobserved target values, H: set of models, n:
number of iterations, P : condition for inclusion)

2: S1 ← SC

3: for k = 1 to n− 1 do
4: Train a model hk on Sk

5: S′ = Sk ∪ {(ci, h(ci))|ci ∈ SI}
6: Create dataset Sk+1 from S′ by discarding all cases (ci, h(ci)) that do not satisfy P
7: end for
8: h← train a model from H on Sk

9: return h
10: end procedure

Note that Algorithm 5 requires specifying a condition P : this tells us which
of the model’s predictions should be considered “sure enough” so that they
could be used for training our subsequent models. A common such condition is
that the epistemic uncertainty EU(H, S)(ci) at ci is lower than some threshold
value. Aside from the difficulty to select a good inclusion condition, one of the
main problems of pseudo-label learning is that it is hard to provide theoretical
guarantees for it.

We will examine a different approach, called generalized risk minimization
(GRM) [5, 8, 6, 24, 32], which is the approach that has been more widely studied
in the (theoretical) literature. The idea behind GRM is to generalize the ERM
algorithm to cases in which we cannot directly evaluate the loss function, since
we are not able to observe the true target value. This idea is formalized by
means of aggregation functions [8]. An aggregation function A : Rk → R is a
map that takes a sequence of numbers and returns a single number, such that

min
i

vi ≤ A(v1, . . . , vk) ≤ max
i

vk.

Common examples of aggregation functions include the minimum, the maximum
and the average.

Let Z = Y ∪ {⊥}. Aggregation functions provide a way to extend a loss
function l : X × Y ×H to a generalized loss function lA : X ×Z ×H as follows:

lA(x, z, h) =

{
l(x, y, h) z = y ∈ Y

A((x, y1, h), . . . , (x, y|Y |, h)) z = ⊥.
(23)

Thus, the generalized loss function lA coincides with l on supervised in-
stances, and, on the other hand, is equal to the application of the aggregation
function A to all possible loss values when the instance is not supervised. Intu-
itively, to evaluate a model on a non-supervised instance, we simply consider all

32

possible target values, evaluate the model on each of these possible alternatives
and then aggregate these values to obtain a single one.

We define the generalized risk minimization algorithm as any algorithm sat-
isfying the following property:

GRM(H, S,A) ∈ argmin
h∈H

RA
S (h) = argmin

h∈H

1

m

∑
i

lA(xi, zi, h).

Notice that while we evaluate and select models based on the generalized
risk lA(xi, zi, h) we still would like to provide guarantees on the true risk R(h),
that is the risk computed with respect to the true unobserved target values.
Similarly to what we have seen in the previous lectures, we are thus interested
in bounding the quantity:

R(h)−R(h∗).

The following theorem provides such a bound for two commonly adopted
aggregation functions:

Theorem 16 ([8, 32]). Let S be a semi-supervised dataset and assume that
we select a model h ∈ H using GRM(H, S,A). Assume that H is finite, h∗ =
argminR(f) ∈ H and R(h∗) = 05. Assume that l is bounded in [0, b]. For every
(x, z) ∈ S, let yx be the unique y ∈ Y s.t. D(x, y) > 0. Then, with probability
larger than 1− δ the following hold:

• If A = max, R(h) ≤ Rmax
S (h) + b

√
log(H/δ)

2m ;

• Assume, further, that l = l0−1. Then, if A = min, it holds that

R(h) ≤ +Rmin
S (h)+

4

θm
∗(log(|H|)∗(log(4 log |H|)+2 log |Y |)+log(1/δ)+1),

where θ = log(2
1+γ) and γ = sup(x,y)s.t.D(x,y)>0 P ((x,⊥)) (that is, γ is

the maximum probability, among all instances (x, y), with which y is not
observed).

The theorem above shows conditions under which we can learn through
GRM, with minimum and maximum aggregation operators: these versions of
GRM are called optimistic risk minimization and pessimistic risk minimization
in the literature [25]. The two cases provide quite different guarantees:

• The guarantee for pessimistic risk minimization holds with no (explicit)
assumption about the data-generating process. Furthermore, it provides
a worst-case guarantee: since the true risk (for any instance) is always
lower than the maximum risk (across all possible labels), we can upper
bound the true risk by the empirical generalized risk. This means that, in

5Note that this implies that ∀x,∃!y s.t. D(x, y) > 0: that is, the target assignment is
deterministic.

33

general, learning through pessimistic risk minimization provides models
that are robust, in the sense that they are worst-case optimal. However,
in practice the term Rmax

S (h) can be quite large!

• By contrast, the guarantee for optimistic risk minimization holds only con-
ditional on an additional assumption about the data-generating process:
namely, the probability with which we are not able to observe the true
targets is not too large. This is intuitively reasonable: if the supervision
signal is sparse, then learning is hard. At the same time, when the above
assumption is met, optimistic risk minimization provides a much more fa-
vorable guarantee: indeed, the is expected to decrease at a rate 1

m (rather
than 1√

m
) and generally Rmin

S (h) < Rmax
S (h).

In practice, one should understand whether for the problem at hand it is better
to have a worse guarantee (which, however, is robust, worst-case optimal and
holds unconditionally) or a better guarantee that, however, holds only condi-
tionally on some assumptions: in the first case, pessimistic risk minimization is
clearly preferable; in the second, one should favor optimistic risk minimization.

Note, crucially, that optimistic risk minimization suffers from two additional
limitations (as compared with pessimistic risk minimization). First, since we
do not know D, we have no way to say whether the assumption required for
the bound in Theorem 16 to work actually holds: this means that, in practice,
optimistic risk minimization can greatly underestimate the true risk. By con-
trast, pessimistic risk minimization always provides a conservative estimate of
the true risk. The second limitation concerns the computational complexity, as
shown by the following Theorem.

Theorem 17 ([6, 8]). Let l be a L-Lipschitz convex loss function, H be set of
models. Then, the following hold:

• Let A = max. Then lA is |Y |L-Lipschitz convex loss function. In partic-
ular, if ERM(H, ·) for H admits a polynomial-time algorithm, then also
GRM(H, ·,max) does;

• Let A = min. Then, in general lA is not convex (this holds already for
the case of linear regression with the Brier score [6]). In general, irre-
spective of the time complexity of ERM(H, ·), the problem of computing
GRM(H, ·,min) is NP-HARD.

Thus, while pessimistic risk minimization generally admits efficient algo-
rithms, this is not true for optimistic risk minimization (this is even more true
in reference to Theorem 16 which, for optimistic risk minimization, holds only
for the l0−1 loss).

References

[1] A. N. Angelopoulos, R. F. Barber, and S. Bates. Theoretical foundations
of conformal prediction. arXiv preprint arXiv:2411.11824, 2024.

34

[2] A. N. Angelopoulos, S. Bates, et al. Conformal prediction: A gentle intro-
duction. Foundations and Trends® in Machine Learning, 16(4):494–591,
2023.

[3] F. Bach. Learning theory from first principles. MIT press, 2024.

[4] E. Black, M. Raghavan, and S. Barocas. Model multiplicity: Opportunities,
concerns, and solutions. In Proceedings of the 2022 ACM Conference on
Fairness, Accountability, and Transparency, pages 850–863, 2022.

[5] A. Campagner. Learnability in “learning from fuzzy labels”. In 2021
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pages 1–
6. IEEE, 2021.

[6] A. Campagner. Learning from fuzzy labels: Theoretical issues and al-
gorithmic solutions. International Journal of Approximate Reasoning,
171:108969, 2024.

[7] A. Campagner, D. Ciucci, and E. Hüllermeier. Rough set-based feature
selection for weakly labeled data. International Journal of Approximate
Reasoning, 136:150–167, 2021.

[8] A. Campagner et al. Credal learning: Weakly supervised learning from
credal sets. FRONTIERS IN ARTIFICIAL INTELLIGENCE AND AP-
PLICATIONS, 372:327–334, 2023.

[9] O. Chapelle, B. Scholkopf, and A. Zien, editors. Semi-supervised learning.
MIT Press, 2006.

[10] A. D’Amour, K. Heller, D. Moldovan, B. Adlam, B. Alipanahi, A. Beutel,
C. Chen, J. Deaton, J. Eisenstein, M. D. Hoffman, et al. Underspecification
presents challenges for credibility in modern machine learning. Journal of
Machine Learning Research, 23(226):1–61, 2022.

[11] C. De Bodt, D. Mulders, M. Verleysen, and J. A. Lee. Nonlinear dimension-
ality reduction with missing data using parametric multiple imputations.
IEEE Transactions on Neural Networks and Learning Systems, 30(4):1166–
1179, 2018.

[12] S. Depeweg, J.-M. Hernandez-Lobato, F. Doshi-Velez, and S. Udluft. De-
composition of uncertainty in bayesian deep learning for efficient and risk-
sensitive learning. In International conference on machine learning, pages
1184–1193. PMLR, 2018.

[13] R. Duan, B. Caffo, H. X. Bai, H. I. Sair, and C. Jones. Evidential uncer-
tainty quantification: A variance-based perspective. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, pages
2132–2141, 2024.

35

[14] C. K. Enders. A primer on maximum likelihood algorithms available for
use with missing data. Structural Equation Modeling, 8(1):128–141, 2001.

[15] A. Gammerman, V. Vovk, and V. Vapnik. Learning by transduction. arXiv
preprint arXiv:1301.7375, 2013.

[16] I. Gibbs, J. J. Cherian, and E. J. Candès. Conformal prediction with
conditional guarantees. arXiv preprint arXiv:2305.12616, 2023.

[17] T. Gneiting and A. E. Raftery. Strictly proper scoring rules, prediction, and
estimation. Journal of the American statistical Association, 102(477):359–
378, 2007.

[18] O. Goldreich. Introduction to property testing. Cambridge University Press,
2017.

[19] P. Gopalan, A. T. Kalai, O. Reingold, V. Sharan, and U. Wieder. Om-
nipredictors. arXiv preprint arXiv:2109.05389, 2021.

[20] G. J. Hahn and W. Q. Meeker. Statistical intervals: a guide for practition-
ers, volume 92. John Wiley & Sons, 2011.

[21] U. Hébert-Johnson, M. Kim, O. Reingold, and G. Rothblum. Multicalibra-
tion: Calibration for the (computationally-identifiable) masses. In Inter-
national Conference on Machine Learning, pages 1939–1948. PMLR, 2018.

[22] W. Hoeffding. Probability inequalities for sums of bounded random vari-
ables. Journal of the American Statistical Association, 58(301):13–30, 1963.

[23] P. Hofman, Y. Sale, and E. Hüllermeier. Quantifying aleatoric and epis-
temic uncertainty: A credal approach. In ICML 2024 Workshop on Struc-
tured Probabilistic Inference {\&} Generative Modeling, 2024.

[24] E. Hüllermeier. Learning from imprecise and fuzzy observations: Data dis-
ambiguation through generalized loss minimization. International Journal
of Approximate Reasoning, 55(7):1519–1534, 2014.

[25] E. Hüllermeier, S. Destercke, and I. Couso. Learning from imprecise data:
adjustments of optimistic and pessimistic variants. In Scalable Uncertainty
Management: 13th International Conference, SUM 2019, Compiègne,
France, December 16–18, 2019, Proceedings 13, pages 266–279. Springer,
2019.

[26] E. Hüllermeier, S. Destercke, and M. H. Shaker. Quantification of credal
uncertainty in machine learning: A critical analysis and empirical com-
parison. In Uncertainty in Artificial Intelligence, pages 548–557. PMLR,
2022.

[27] E. Hüllermeier and W. Waegeman. Aleatoric and epistemic uncertainty
in machine learning: An introduction to concepts and methods. Machine
learning, 110(3):457–506, 2021.

36

[28] M. P. Kim, A. Ghorbani, and J. Zou. Multiaccuracy: Black-box post-
processing for fairness in classification. In Proceedings of the 2019
AAAI/ACM Conference on AI, Ethics, and Society, pages 247–254, 2019.

[29] D.-H. Lee et al. Pseudo-label: The simple and efficient semi-supervised
learning method for deep neural networks. In Workshop on challenges in
representation learning, ICML, volume 3, page 896. Atlanta, 2013.

[30] E. L. Lehmann and G. Casella. Theory of point estimation. Springer Science
& Business Media, 2006.

[31] R. J. Little and D. B. Rubin. Statistical analysis with missing data, volume
793. John Wiley & Sons, 2019.

[32] L. Liu and T. Dietterich. Learnability of the superset label learning prob-
lem. In International conference on machine learning, pages 1629–1637.
PMLR, 2014.

[33] J. H. Manton, P.-O. Amblard, et al. A primer on reproducing kernel hilbert
spaces. Foundations and Trends® in Signal Processing, 8(1–2):1–126, 2015.

[34] T. Mortier, V. Bengs, E. Hüllermeier, S. Luca, and W. Waegeman. On the
calibration of probabilistic classifier sets. In International Conference on
Artificial Intelligence and Statistics, pages 8857–8870. PMLR, 2023.

[35] A. Rakhlin, O. Shamir, and K. Sridharan. Making gradient descent
optimal for strongly convex stochastic optimization. arXiv preprint
arXiv:1109.5647, 2011.

[36] A. Roth. Uncertain: Modern topics in uncertainty estimation. Unpublished
Lecture Notes, page 2, 2022.

[37] Y. Sale, M. Caprio, and E. Höllermeier. Is the volume of a credal set
a good measure for epistemic uncertainty? In Uncertainty in Artificial
Intelligence, pages 1795–1804. PMLR, 2023.

[38] Y. Sale, P. Hofman, L. Wimmer, E. Hüllermeier, and T. Nagler. Second-
order uncertainty quantification: Variance-based measures. arXiv preprint
arXiv:2401.00276, 2023.

[39] B. Scholkopf and A. J. Smola. Learning with kernels: support vector ma-
chines, regularization, optimization, and beyond. MIT press, 2018.

[40] M. Sensoy, L. Kaplan, and M. Kandemir. Evidential deep learning to quan-
tify classification uncertainty. Advances in neural information processing
systems, 31, 2018.

[41] G. Shafer and V. Vovk. A tutorial on conformal prediction. Journal of
Machine Learning Research, 9(3), 2008.

37

[42] S. Shalev-Shwartz and S. Ben-David. Understanding machine learning:
From theory to algorithms. Cambridge university press, 2014.

[43] T. Silva Filho, H. Song, M. Perello-Nieto, R. Santos-Rodriguez, M. Kull,
and P. Flach. Classifier calibration: a survey on how to assess and improve
predicted class probabilities. Machine Learning, 112(9):3211–3260, 2023.

[44] L. G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134–1142, 1984.

[45] S. Van Buuren. Flexible imputation of missing data. CRC press, 2018.

[46] S. Van Buuren and K. Groothuis-Oudshoorn. mice: Multivariate impu-
tation by chained equations in r. Journal of statistical software, 45:1–67,
2011.

[47] V. Vovk, A. Gammerman, and G. Shafer. Algorithmic learning in a random
world, volume 29. Springer, 2005.

[48] D. H. Wolpert. The lack of a priori distinctions between learning algo-
rithms. Neural computation, 8(7):1341–1390, 1996.

[49] T. Zhang. Mathematical analysis of machine learning algorithms. Cam-
bridge University Press, 2023.

[50] Z.-H. Zhou. A brief introduction to weakly supervised learning. National
science review, 5(1):44–53, 2018.

38

